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ABSTRACT 

Performance and scalability are essential non-functional features of contemporary cloud solutions. Per-

formance modeling and simulation techniques provide the tools required for cloud capacity planning and 

design. In this publication we describe a modular approach to simulate the hardware and software compo-

nents of clouds. This approach supports the rapid construction of new cloud models by combining availa-

ble simple or compound simulation modules, adding new cloud modules when required and adapting the 

implementation of existing ones if necessary. Key design points are a careful separation between hard-

ware (infrastructure) modules and modules representing software workflows as well as the introduction of 

a system of a hierarchical request execution phases separating the simulation of high-level cloud 

workflows from the simulation of workflows at hardware component level. 

1 INTRODUCTION 

Cloud computing is a game changing technology to provide respectively to consume data center re-

sources, see e.g. (Cloud Computing 2011) and references therein. Because cloud customers expect good 

and consistent response times to their requests irrespective of the workload already posted against the 

cloud, performance and scalability are essential here. Typical performance metrics here are e.g. the 

“number of concurrent users” that a cloud can support respecting certain response time constraints or 

throughput and response times of provisioning images (e.g. instances of operating systems) as a function 

of the number of concurrent provisioning requests in flight. 

 Performance and scalability of clouds handling such workloads significantly depend on the infrastruc-

ture available (in terms of physical server, networking and storage), as well as on the software heuristics 

to manage this infrastructure, cloud users, approval processes and reservation and provisioning of re-

sources.  

 To provide a balanced, workload optimized design of clouds, cloud architects frequently have to rely 

on a rather incomplete set of measurements available only for small and medium sized clouds and then try 

to extrapolate to larger cloud infrastructures and workloads. Obviously, this is the traditional domain for 

performance modeling, either for analytic modeling (Bloch, Greiner, de Meer and Trivedi 2006; Klei-

nrock 1975; Kleinrock 1976) or for a simulation based modeling approach (Law and Kelton 2000; Banks, 

Carson II, Nelson and Nicol 2005). Although these technologies are well established e.g. in designing 

new microprocessors (Pasricha and Dutt 2008) or the performance analysis of networks (Bertsekas and 
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Gallager 1992) they need to be adapted to meet the special requirements of simulating clouds as described 

below: 

 

 The hardware infrastructure of clouds consists of servers, networking switches and storage subsys-

tems and all of these components need to be taken into account on an equal footing. This is in contrast 

to most of the performance simulation work focusing on (parts of) just one of these components. 

 A cloud being a complex system with intricate interactions between hardware and software modules, 

we need to treat software workflows on an equal footing with the hardware infrastructure in simulat-

ing end-to-end performance. 

 In general the software heuristics for managing and using a cloud change at a much higher rate than 

the available cloud hardware infrastructures; therefore it is important to introduce separate modules 

for simulating software heuristics and the hardware infrastructure to support a rapid implementation 

of new cloud software heuristics for an unchanged hardware infrastructure and vice versa. 

 The market for cloud solutions being highly dynamic, we need to provide simulations of new clouds 

in a timely manner, i.e. we need to support a rapid prototyping here. 

 We need to allow for selectively and rapidly adding details to the simulation of specific hardware or 

software components to increase the authoritativeness of the simulation if required by the stake hold-

ers of a simulation effort. 

 

In this publication we will describe a framework for performance simulations of clouds addressing the 

above mentioned requirements. The key features are hierarchies of: 

 

 simulation modules representing hardware infrastructure components as well as software workflows. 

These modules communicate with each other using messages using well defined interfaces (ports re-

spectively gates). The software modules interact with the hardware modules requesting resources (e.g. 

processor cycles or bandwidth) from them. 

  phases describing the execution of request workflows at different levels, e.g. at the cloud and the 

component level. 

 

Simulation models of clouds can then in many cases be built by simply combining available simulation 

modules (“Lego bricks”) and only modifying some associated parameter files . 

 As usual in performance modeling, a key point is to find an appropriate abstraction level of the sys-

tem and workload under investigation. This level is largely determined by the goals of the modeling ef-

fort. In our case a main focus is to simulate end-to-end scalability of response times and throughput of 

various provisioning heuristics, administrative tasks and application workloads on different cloud infra-

structures. The abstraction level as indicated in this publication may need to be adapted for other simula-

tion goals. In this publication we will focus more on the software architecture of the simulation frame-

work, but also provide details on the current modeling abstractions used. 

 The rest of the publication consists of sections describing the simulation of the cloud components 

(software and hardware), the simulation of the cloud workloads and finally providing details on workload 

generation for clouds. 

 The current implementation of the framework uses the OMNEST Simulation Framework (OMNEST 

2011; Varga and Hornig 2008), which nicely supports building modular simulations.   

2 SIMULATION OF CLOUD COMPONENTS 

In this section we describe our approach to simulate the various hardware and software components of a 

cloud. Although clouds are in general highly complex systems, they frequently consist of a rather small 

set of fundamentally different building blocks as shown in the taxonomy of Figure 1. Furthermore, the 

leaf components of this taxonomy can be modeled as a combination of a few fundamental hardware com-
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ponents with modules representing associated software workflows. This naturally leads to a modular de-

sign of a cloud simulation framework supporting the construction of complex clouds out of a few basic 

parameterized simulation modules.  

 We start with outlining the design of the simulation modules representing the basic hardware (infra-

structure) components, i.e. multi-core processor systems, networking switches and storage subsystems. 

This also includes a description of some modeling abstractions we made. Then we describe the modules 

representing software workflows and demonstrate how they can be combined with hardware modules to 

form the basic cloud modules of Figure 1.  

 

Figure 1: Taxonomy of key cloud components. 

These basic cloud modules can then be combined into more complex compound modules representing 

e.g. a cloud resource pool or cluster consisting of a set of managed systems, storage subsystems and 

switches . A simulation of a complete cloud may then be built using such resource pool simulation mod-

ules, adding simulation modules representing the management subsystem and an appropriate workload 

generator. 

2.1 Basic Hardware Simulation Modules 

Our modeling approach for the basic hardware components is as follows: we think of the hardware com-

ponents providing the active resources (in form of processor cycles or bandwidth associated with disk or 

network IO) required by the requests posted against the cloud to perform their operations as required by 

the business logic.  

 A request executing at a hardware simulation module first tries to allocate the required resources 

(passive ones like amount of memory or active ones like processor cycles) to proceed. If it is successful, it 

decreases the available resources accordingly and proceeds to be delayed for a specified amount of time 

by scheduling an appropriate event in the future event list. If not, the request is inserted into a queue for 

the required resource and waits. When encountering the scheduled event, the request deallocates the re-

quested resources again, increases the available resources accordingly and retrieves the requests waiting 

in the appropriate queue to be scheduled immediately so that they can proceed to try to allocate the re-

sources they require. 

2.1.1 Multi-core Processor Systems 

Our current model of multi-core processor systems consists of the following components: 

 processor cores 

 memory 

Cloud component

End point component Network component

Managed node Management node Switch

Storage subsystem

Network Interface
Card

Cloud component

End point component Network component

Managed node Management node Switch

Storage subsystem

Network Interface
Card
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 a generic shared resource representing e.g. the processor bus and the Memory Interface Controller 

(MIC) 

 

 Processor cycles are modeled as active resources, while memory and the generic shared resource 

represent the passive resources required to access the processor cycles. A request at a multi-core proces-

sor needs to allocate (part of) the available cycles for a specified amount of time to proceed. After its 

processing has completed, it releases the cycles again allowing other requests to allocate them if required, 

see the beginning of this section. The required resources are parameters of the simulation that can be pro-

vided in form of parameter files or via the OMNEST graphical user interface. 

 We support a partial allocation of the available cycles at the processing cores to implicitly model the 

common situation that a request can not make use of all of the available cycles due to waiting for locks  or 

the completion of IO operations. We also model waiting for locks to become available explicitly when re-

quired, see section 2.3. 

 Using the concept of execution phases described in more detail below, we can model the execution of 

requests at multi-core processors in terms of a sequence of computational phases, each phase possibly 

having completely different requirements in terms of resources and execution times required. 

 A configurable scheduler has also been implemented as part of the multi-core processor system mod-

ules, representing the appropriate operating system or the hypervisor functionality. Currently we frequent-

ly do not have separate modules modeling system software or middleware, but associate the resources 

consumed here with the application level requests. 

2.1.2 Disks 

We model disks as devices providing a specified amount of bandwidth as an active resource. Requests 

may then allocate a bandwidth for sequential and random read and write IO operations for an appropriate 

amount of time depending on the (segmented) data size associated with the IO operation. The remaining 

available bandwidth at the disk is then updated accordingly for all types of IO, i.e. the bandwidth availa-

ble for newly arriving requests will be reduced accordingly. 

 Furthermore, we model simple disk caches parameterized by cache hit probabilities and appropriately 

increased bandwidths. 

2.1.3 Switches 

Analogous to disks, switches are also modeled to provide bandwidth as an active resource and the request 

execution as described at the beginning of section 2.1 is also valid here. The routing functionality of 

switches will be implemented as part of the associated software modules as described in section 2.3. As-

suming a switch consists of an internal fabric and a number of attached ports, we associate a maximum 

bandwidth with the internal fabric and maximum bandwidths with each of its ports allowing for modeling 

of blocking respectively non-blocking switches.  

2.2 Compound Hardware Simulation Modules 

In this section we describe how the basic hardware simulation modules can be combined to create com-

pound simulation modules representing more complex hardware components. 

2.2.1 Multi-core Processor Systems with local Disks 

It is straightforward to combine the basic simulation modules of multi-core processors and disks into 

compound modules for a multi-core processor systems with a local disk subsystem attached (hosts, 

nodes), see Figure 2 below. 
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 We can now model the execution of requests here in terms of a sequence of alternating computational 

and disk IO phases, each phase possibly having completely different requirements in terms of processor 

cycles or disk bandwidth. Furthermore, we support the concept of background requests, i.e. a computa-

tional request is accompanied by concurrent disk IO requests or vice-versa; see Figure 3 below. 

2.2.2 Storage Subsystems 

Because most of the recent storage subsystems combine a set of multi-core processors with disk arrays, 

see e.g. (Smart businesses are turning to IBM Scale Out Network Attached Storage from IBM 2011), we 

can use the same simulation modules here as for multi-core processor systems with local disks and simply 

use a different sequence of execution phases (e.g. only disk IO phases with computational background) 

and appropriate parameters. 

2.3 Software Simulation Modules 

Software simulation modules implement the workflows (business logic) of requests posted against the 

cloud, e.g. requests for provisioning resources (e.g. retrieving images from an image repository and instal-

ling them on a managed node) or requests from users for computation or communication. Key attributes 

of a request used for implementing its workflow are: 

 its type, which is initialized once at request creation time at the workload generator, see section 3 for 

details. 

 its cloud-level phase, which is updated frequently during execution at the modules  

 the module ports associated with its arrival and departure 

 the maximal number of concurrent requests of each type allowed during each processing phase.  

 

 

 

Figure 2: Combining simulation modules for a multi-core processor and for disks into a simulation mod-

ule for a multi-core processor system with attached local disks. Requests are routed to the multi-core 

processor module first and then from there to the disk module during disk IO phases. 

 

DisksMulti-core processor

Multi-core processor with attached 
local disks

DisksMulti-core processor

Multi-core processor with attached 
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Figure 3: A sequence diagram representing the execution of computational and disk IO phases at a multi-

core processor node: we model the execution of requests in terms of a series of computational and disk IO 

phases possibly including associated background requests (indicated by the dotted line). 

 

 This last limitation is frequently encountered at so called “critical regions” in software workflows 

where several requests (threads) need to be serialized to consistently update a shared variable (see Figure 

4) or due to the management system of the cloud protecting the managed infrastructure from being over-

loaded, see (Configuration Maximums VMware* vSphere* 4.1 2011). 

 Currently we have implemented software simulation modules for management nodes, managed nodes 

(hypervisors), other administrative nodes like a VMware* vCenter* Server (VMware* vCenter* Server 

2011), storage subsystems and network switches. 

 The software switch simulation modules play a special role gluing together the other modules 

representing hosts and storage subsystems. They currently support 3 different types of switch ports asso-

ciated with the 3 major types of networks available in a cloud: the management, customer and storage 

LAN ports. The software switch simulation modules route the incoming requests according to their input 

port, type and execution phase and are completely configurable using parameter files. This is a key fea-

ture for rapid prototyping. 

 Software simulation modules always need to be accompanied by appropriate hardware simulation 

modules providing the resources necessary for the requests to proceed executing their business logic, see 

Figure 5 and the next section. 
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Figure 4: This figure indicates how we can apply our concept of execution phases to model a “critical re-

gion” during execution of a software workflow: several incoming requests of phase 1 may compete for a 

lock (token) required to enter the “critical region” (phase 1) allowing only 1 request in flight. The non-

successful requests have to wait in a queue, while the request owning the lock can proceed. Once this re-

quest has completed processing in the critical region, it returns the lock to the pool and initiates popping 

off another request from the head of the queue to acquire the lock and proceed to the “critical region”. Af-

ter leaving the “critical region” and entering phase 3, we again may have more than one request concur-

rently in flight. The heuristics described here is analogous to the one outlined at the beginning of section 

2.1 for requests requiring resources on hardware level. 

2.4 Basic Cloud Simulation Modules 

The basic simulation modules of clouds representing e.g. management nodes, managed nodes, the storage 

subsystem and network switches can now be easily created by combining hardware- and software mod-

ules; see Figure 5 and the associated caption for more details on how a software workflow module is 

combined with a multi-core processor system with local disks. 

 The careful separation of software and hardware simulation modules is one of our key design deci-

sions and has several benefits: 

 the development cycles of new hardware and software architectures for clouds are generally quite de-

coupled; this can be nicely reflected in different development cycles for the associated simulation 

modules 

 it is straightforward to combine various software modules with a single hardware module or vice ver-

sa modeling e.g. several guest operating systems or virtual machines on one hypervisor or distributing 

requests to a cluster of physical nodes,. 

 support of software and hardware driven simulations, i.e. we may focus on detailed simulations of 

software workflows using rather generic and simple simulation modules for the hardware components 

or analyze the performance of a detailed simulation model of a special hardware component (e.g. a 

switch) exposed to typical cloud workload patterns. 
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Figure 5: A simulation module representing a software workflow (green) is combined with a multi-core 

processor system with attached local disks to form a basic cloud simulation module (e.g. a management 

node): the software module sends out requests to the hardware modules to allocate a specified amount of 

resources for a certain amount of time as required to execute its business logic. The green box at the top 

right of the figure indicates the combination of hardware- and software modules and we will use this icon  

and similar ones in figures below to represent cloud components. 

 

2.5 Compound Cloud Simulation Modules 

The basic cloud simulation modules can then be combined into compound simulation modules 

representing e.g. VMware* cluster or datacenters by connecting their ports; see Figure 6. The final step is 

then to combine these compound simulation modules into a complete cloud simulation model and include 

an appropriate workload generator (for details on the workload generator module see below) to post re-

quests against it, see Figure 7. 

3 SIMULATION OF CLOUD WORKLOADS 

The workload posted against the cloud can be categorized at high level into customer and administrative 

workloads; for a more detailed taxonomy of cloud workloads (i.e. requests posted against the cloud); see 

Figure 8 below. Each request posted against the cloud is characterized by a set of attributes with the most 

important ones being its type (associated with the requests of the taxonomy described above) and its ex-

ecution phases. Both attributes are instrumental for implementing the request workflow. A key design 

point in our framework is to decouple the phases on the cloud workflow level (used to implement the 

business logic) from the lower level phases required to implement the request processing at the hardware 

components; see Figure 9.  This allows the rapid introduction of new cloud level workflows without the 

need to change the requests execution workflows at the hardware simulation modules or vice versa. 

 Other important attributes specify the requirements of requests for processor cycles or network and 

disk bandwidth during the various execution phases; these attributes are drawn from parameter distribu-

tion functions associated with the request type and phase at the appropriate simulation modules. 
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Figure 6: A typical cloud cluster consisting of managed nodes, a storage subsystem and appropriate LANs 

for customer access, management requests (e.g. provisioning of images) and storage access. The green 

colour indicates that we always use a combination of hardware and software simulation modules as dis-

cussed in section 2.4 above. 

 

Figure 7: A typical cloud simulation consisting of various clusters of managed nodes including storage 

subsystems and appropriate LANs for customer and management traffic. The green colour indicates that 

we always use a combination of hardware and software simulation modules as discussed in section 2.4 

above. For details concerning the workload generator, see section 4. 
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4 THE CLOUD WORKLOAD GENERATOR 

In the workload generator module we have implemented all functionality related to generating, initializing 

and posting requests of various types against the cloud and collecting all request related statistics. Device 

related statistics like utilization are collected at the device simulation modules. Therefore, all requests 

need to return to the workload generator for collecting statistical data, even if they do not spend any simu-

lation time on their way back to the workload generator. 

 We currently support the creation of open and closed streams of various request types possibly with 

bulk (batch) arrivals.  

 

Figure 8: A taxonomy of some typical requests posted against clouds. The associated request types are 

used within the software simulation modules to implement the business logic. The hardware modules are 

of course agnostic with regard to the request type, i.e. they provide the available physical resources to 

whatever request asks for them. 

 

 

Figure 9: A (logical) sequence diagram indicating the relationships between the various levels of request 

execution phases: the cloud level phases (implemented in software modules) initiate sequences of compu-

tational and IO phases at the level of compound hardware modules and these phases initiate sequences of 

low-level phases at the basic hardware modules for resource management and request execution. 
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5 CONCLUSION 

In this publication we have described the architecture of a modular framework for cloud performance si-

mulations. This framework enables capacity planning and supports design of new cloud designs in a time-

ly and accurate manner by supporting the creation of new cloud simulations by gluing together basic and 

compound simulation modules representing cloud building blocks. The implementation of the building 

blocks themselves may be adapted to satisfy accuracy or execution time constraints of various perfor-

mance simulation studies. Key design points are the decoupling of the simulation of hardware and soft-

ware components as well as of the simulation of workflows at cloud level and at component level. 

OUTLOOK 

We plan to refine the simulation of our current hardware and software modules, add more simulation 

modules, increase scalability by parallelization and implement the generation and simulation of complex 

customer workloads. Furthermore, we plan to enable the collection of additional statistical data and in-

crease the general usability of our framework. 
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