
A Framework for End-to-end Simulation of High-
performance Computing Systems

Wolfgang E. Denzel
IBM Zurich Research Laboratory

Säumerstrasse 4
8803 Rüschlikon, Switzerland

+41 44 724 8516

wde@zurich.ibm.com

Jian Li
IBM Austin Research Laboratory
11501 Burnet Road 904/6C-018

Austin, TX 78758, USA
+1 512 838 8285

jianli@us.ibm.com

Peter Walker1
Open Grid Computing, Inc.

4030 W. Braker Ln. STE 130
Austin, TX 78759, USA

+1 512 343 9196

peter@vircion.com

Yuho Jin1
Computer Science Department
Texas A&M University, College

Station, TX 77843-3112, USA
+1 979 845 5439

yuho@cs.tamu.edu

ABSTRACT
We present an end-to-end simulation framework that is capable of
simulating High-Performance Computing (HPC) systems with
hundreds of thousands of interconnected processors. The tool
applies discrete event simulation and is driven by real-world
application traces. We refer to it as MARS (MPI Application
Replay network Simulator). It maintains reasonable simulation
details of both the processors in general and specifically the inter-
connection network. Among other things, it features several
network topologies, flexible routing schemes, arbitrary application
task placement, point-to-point statistics collection, and data
visualization. With a few case studies, we demonstrate the
usefulness of this tool for assisting high-level system design as
well as for performance projection and application tuning of
future HPC systems.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
communication networks – Network architecture and design

C.4 [Performance of systems]: Design studies, modeling
techniques

I.6.8 [Simulation and Modeling]: Type of Simulation – Discrete
event, parallel

General Terms
Performance, Design, Experimentation.

Keywords
High-performance computing, end-to-end simulation, intercon-
nection network.

1. INTRODUCTION
The next generation of High-Performance Computing (HPC)
systems will be distributed systems with hundreds of thousands of
processing nodes interconnected via large packet-switched
interconnection networks. In the design and development of such

new systems, accompanying performance modeling by simulation
is indispensable to evaluate the system design options and to help
optimize the performance of the processors, the interconnection
network and eventually the entire system, including software and
HPC applications. Simulation of such huge systems is challenging
and needs new approaches.

On the processor side, there are established methods and tools to
simulate complete systems including the applications running on
the processors. Execution-driven full-system simulation is applied
by modeling processors and applications very accurately at a
degree of detail down to the clock and instruction level (e.g.
MAMBO [1], SIMICS [2]). In this way, precise application
execution times, IPCs (Instruction per Cycle), cache miss rates,
etc. can be obtained, which are the preferred performance measure
for computing systems. Although one can simulate individual pro-
cessors or small clusters of processors in this way, the degree of
detail does not allow the scaling of this kind of simulation to HPC
systems of many thousands of interconnected processors: This
would be too time- and resource-consuming, if not even
practically impossible.

On the other hand, there is the well-established field of switch and
network simulation, in particular in the telecom area. In this field,
discrete event-driven simulation is typically applied at a higher
degree of abstraction by modeling switches or networks of
switches as queuing systems at packet-level granularity. Hence
such network simulations can reasonably scale to thousands of
network ports on reasonably-sized computers. However, there the
main intention is to obtain throughput and delay statistics for
synthetic statistical traffic models. While this might be sufficient
for telecom applications, it is not suitable for the very different
characteristics of HPC interconnect traffic or for obtaining appli-
cation benchmarks.

In a first phase of system design, the individual simulation
methods for processors and for switches or interconnection
networks still are very good means for optimizing the respective
subsystems. However, separately optimized subsystems may not
necessarily yield an overall system optimum from the performance
and cost point of view. Furthermore, the impact of different
network topologies, switch parameters, link and network
parameters, and routing, flow control, congestion control and
deadlock prevention algorithms on the run time of real-world
HPC applications cannot be studied by separate simulations of

1 This work was performed while the author was with the IBM Austin

Research Laboratory.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTools’08, March 3-7, 2008, Marseille, France.
Copyright 2008 ACM, ISBN 978-963-9799-20-2…$5.00.

processors and network. The same holds for different ways to
place application tasks to system nodes. All these network-related
aspects are becoming increasingly important so that the network
performance can keep up with the processor performance under
proliferating system size. Too little attention has been paid to
these network-related aspects in prior simulation work that
focused on the processor side. Hence, end-to-end simulation with
sufficient details on both the processor side (including real HPC
applications) and the network is desirable for a second phase of
system optimization.

However, large-scale end-to-end simulation of HPC systems
running benchmark applications on hundreds of thousands of
processors communicating across a large interconnection network
is a challenge at the same level of detail as is required for system
design and development. This requires the right level of abstrac-
tion, an appropriate, efficient “light-weight” simulation tool—a
tool that can flexibly cope with the numerous design alternatives
that may arise during system design, and a tool that allows
distributed parallel simulation to cope with the very large scale.

The MARS framework is the result of our effort towards a full-
system end-to-end simulation of versions of the PERCS2 HPC
architecture. We decided to build on an existing, event-driven
network simulation environment we had previously developed
and used for switch and network simulations in telecom
applications. Based on the efficient and flexible OMNEST (also
known as OMNeT++ [3]) framework, this simulator allowed the
simulation of multistage fat-tree or mesh-type packet-switching
networks driven by statistical traffic at the appropriate level of
detail. We extended this tool to support end-to-end coverage by
replacing the existing statistical packet generators with a new
abstract computing node model that is driven by real-world
application traces. For the larger system sizes, we newly exploited
the OMNEST parallel simulation capability.

As the Message Passing Interface (MPI) standard is pervasively
used in HPC applications, our application traces are MPI traces,
i.e., traces of the MPI calls in the application software. The trace
files are recorded per task of the application on a real system that
should be similar to the target system, e.g., a previous-generation
system. Alternatively, trace files can be generated synthetically
based on deep application knowledge. Our simulator allows
arbitrary placement of the tasks onto the system nodes, i.e., the
replay of a particular task trace file can be associated to any
arbitrary computing node in the system. The nodes replay the
associated trace files by generating the appropriate semantic
actions, which eventually cause I/O messages to be sent or
received via the interconnection network or computing time to be
spent in the node itself. The computing time is determined by
parameters that account for the processor differences between the
system traced and the simulated target system. To precisely
determine these parameters requires the expertise of the processor
developers and/or comparisons with detailed full-system simula-
tions (MAMBO) of a single target processor. Packets injected into
the network experience the full effects of the network protocols
under investigation. The network time is determined by the

2 As part of the High Productivity Computing Systems (HPCS) initiative

sponsored by the Defense Advanced Research Projects Agency
(DARPA), IBM is researching and developing the IBM PERCS—
productive, ease-to-use, reliable computing system—for implementation
by the year 2010.

resulting queuing times and link delays in the simulated network.
By replaying application task traces in a semantically correct
way—as opposed to just pushing static traffic traces into the
network, our model accounts for the impact of the network loop,
i.e., responses from peer tasks are waited for to unlock subsequent
transmissions reactively. It is difficult, however, to precisely
differentiate potential effects of waiting-time-dependent
application behavior, which is a well-known issue for trace-driven
simulation.

To be useful for the high-level system design of future HPC
systems as well for application tuning, the MARS framework
maintains an appropriate level of trace-driven simulation details of
both the processors in general and specifically the interconnection
network. Among other things, it features several network topo-
logies, flexible processor, switch and network adapter models, a
rich set of routing schemes, arbitrary application task placement,
point-to-point statistics collection, and data visualization. First
applications of our tool allowed us to provide useful feedback to
system designers. In the following, we demonstrate this with a few
case studies. Thanks to the possibility to simulate full-size
systems by parallel simulation, we were able to validate the
correct full-system function and determine the full-system
performance, which in turn enabled the validation of analytical
performance estimates. We have simulated up to 65,536 nodes,
each with eight processor cores, on a 32-way SMP cluster. We
believe that even larger simulations are possible.

Our paper is organized as follows. In Section 2 we describe the
simulation methodology and the underlying simulator framework
in more detail. In Section 3 we present exemplary results from
four case studies to illustrate the capabilities of our simulation
environment. Because of space limitation, we skip detailed
quantitative descriptions of the simulated system configurations
and application characteristics. Instead we focus on qualitative
results. In Section 4, we briefly discuss related work, followed by
conclusions and a brief outlook in Section 5.

2. SIMULATION METHODOLOGY
2.1 Simulation Framework
The MARS simulation framework comprises the following set of
our own and/or third-party components:

• the OMNEST discrete event simulation core with parallel
simulation support,

• network modules describing the overall system model topology,
i.e., its subcomponents and the way these are interconnected,

• pluggable modules modeling the subcomponents of the HPC
system, i.e., switches, network adapters and computing nodes,

• tools for application-trace collection and/or trace synthesis,
• data/result tracing modules and visualization tools.

In the following we describe the simulation framework, its
components and further aspects of the simulation methodology in
more detail by using an underlying system model of an exemplary
HPC system with a fat tree interconnection network.

2.2 Simulation Model
Figure 1 illustrates a high-level overview of the exemplary HPC
simulation system model. For the network part, our simulation
framework builds around two basic, flexibly configurable and
replicable OMNEST modules, i.e., a switch module and a network

adapter module. These two basic modules are designed in such a
way that any arbitrary interconnection network topology can be
flexibly arranged in an OMNEST network description by explicit
or algorithmic specification of the connections between multiple
instantiations of the switch and network adapter modules. Over
time we have created a set of network descriptions for the major
network topologies under discussion in the HPC community and
in our own projects. For illustration purpose, Figure 1 shows a
particular three-level fat-tree topology. Our corresponding
OMNEST network description is defined universally for fat trees
up to a reasonable maximum number of fat-tree stages. Using
conditional module array sizes and conditional connections allows
us to parameterize the actually desired number of levels.

The origin of our network simulator was limited to synthetic
statistical traffic. For this purpose, each network adapter was fed
by a statistical packet generator module. Certainly, this continues
to be useful for modeling random-access benchmarks, such as the
GUPS (Giga updates per second) benchmark [4]. On the other
hand, our new extension for end-to-end simulation replaces the
original packet generator module with a new, generic computing-
node module that is driven by application traces. To achieve
simulation scalability, this node module is confined to a
reasonable level of abstraction. As illustrated in Figure 1, each
node module is a compound OMNEST module that models
multiple processor cores interconnected by a bus model. Further-
more, one or multiple application tasks can run concurrently on
the node’s processors. This is controlled by a system kernel. The
corresponding task modules perform semantic actions driven by
an application trace file. In the OMNEST configuration file, each
task of an application, i.e., its associated trace file, can be

assigned to a task module of an arbitrary node module. Thereby
one or multiple tasks can be placed onto the same node.
Optionally, each task of an application can be placed to multiple
nodes. In this way, multiple simultaneously running partitions of
the same application can be modeled.

Obeying the causality between messages, the task modules replay
the associated trace files by generating the appropriate semantic
actions that eventually cause computing time to be simulated in
the node itself or MPI messages to be sent or received via a
network adapter across the network of switches. MPI messages
are sent to the ingress part of the network adapter, where they are
segmented into smaller network packets referred to as flits. The
flits traverse the switch modules in multiple hops before they
eventually reach the egress part of the network adapter, where
they are reassembled into the original MPI messages. These are
forwarded to the receiving node module, where MPI receive
actions are scheduled to wait for them.

2.3 Model Subcomponents
2.3.1 Switch module
The switch module has a flexible combined input- and output-
buffered architecture that can be configured into most popular
switch architectures by parameterization. The size of the switch,
the number and arrangement of logical queues, buffer sizes,
scheduling options, the number of virtual circuits and priority
classes, port speeds, or the internal speedup and delays are
examples of switch parameters. Further functions supported are
credit-based flow control, numerous routing options, and
deadlock-prevention mechanisms. In simulations accompanying
the development of new switches, it frequently happens that new
functions need to be added or others changed. This is flexibly
possible in OMNEST because the lowest-level simple module
functions are programmed in C++. For other specific cases we
have also simplified switch models, for example, a generic
InfiniBand switch module.

2.3.2 Network adapter module
The network adapter module consists of an ingress and egress
part. Similar to the switch module, most realistic adapter architec-
tures can be configured by parameterization. The number and
arrangement of logical queues, buffer sizes, scheduling options,
and link speed are examples of network adapter parameters.

The ingress part of the network adapter performs the segmentation
of MPI messages into network packets, the flits. Correspondingly,
the egress part performs the reassembly of flits into MPI
messages. Optionally, a re-sequencing function is provided to
account for the fact that flows of packets can get out of sequence
in multi-path network topologies. Understanding the overhead of
re-sequencing is important because it may destroy expected gains
of sophisticated multi-path routing schemes.

2.3.3 Node module
As described above, the node module provides a model for
multiple processor cores and multiple trace-driven tasks running
on the processor cores. There are a number of parameters that
determine the processor speed, such as the system bus bandwidth,
the number of memory controllers, HWMMIO (Hardware
Memory Mapped IO) latency, and system call latencies relative to
the parameters of the real system on which the application traces

interconnection network (fat tree example)

. switch
module

switch
module

. . . switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

..

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

..

… … … … … … … …

… … … … … … … …

… … … … … … … …

… … … … … … … …

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

network
adapter
module

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

.

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

network
adapter
module

.

task0

MPI application trace files

task1 task2 task3 taskM

configurable task-to-node placement via OMNEST configuration file

Figure 1. HPC system model example with fat-tree
interconnection network

are recorded. One may also set these parameters to project a future
system configuration.

An interesting option is to set the processor speed to infinite. In
this way, runtime results are obtained that exclusively contain the
portion of time spent for I/O and in the network. This allows the
impact of the network to be crystallized out and enables good
comparisons between different network options. Furthermore,
based on the comparison to the runtime with the real, finite
processor speed, one can judge the balance between processing
and networking, i.e., whether a system is processing-limited,
network-limited, or balanced.

2.3.4 Task module
The key submodule of the node module is the task module. Its
high-level architecture is illustrated in Figure 2. A trace reader
function reads the lines from the trace file that is assigned to this
particular task and node. As there might exist thousands of trace
files that need to be accessed constantly, we apply a caching
mechanism to this trace-reading function.

From a read trace line, a semantic action scheduler determines
which kind of MPI-call-related module needs to be called or
whether computation time needs to be simulated. For each MPI
call type that may occur, a corresponding module must be
provided. Point-to-point MPI calls directly involve a Send or Recv
operation to be performed. A Send operation eventually causes an
OMNEST message to be created that represents the MPI message.
The message size is determined by the size indicated in the trace
line. Because the target of an MPI message is another task rather
than a network address as required for routing in the network, the
destination network address for the message created has to be
determined by a specific function that finds the network address
of the node module the target task is placed to. On the other hand,
a Recv operation waits for actual reception of a corresponding
message. In the case of MPI collectives, the corresponding
modules simulate what the MPI library supposedly does: For
example, a Broadcast operation might be decomposed into
multiple sequential point-to-point actions.

For the MPI application traces we have studied so far, we only
needed to support about a dozen different MPI calls. In general,
however, there are two problems with the approach. One is that
MPI defines many dozens of MPI call types, and it simply is a lot
of work to write all the corresponding modules, some of which
may never be needed. Second, a specific module implementation
might not be appropriate if another MPI library is used. The
efficiency of different MPI library implementations varies, and

some are optimized for the specific network topology of the
system they are provided for. Hence, as far as possible, we try to
obtain traces that are not taken at the usual MPI call level but
rather at a lower level, where eventual point-to-point messages
can be recorded. This has the advantage that MPI-call-related
modules are no longer needed in our task module. Second, the
simulator implementation remains independent of the specifics of
the individual MPI library implementations, although the simula-
tion results still reflect the differences in the MPI software
implementations. In this way, the simulator becomes a helpful
tool also for the software design of the MPI library for the target
system.

2.4 Routing Function
For routing, our network simulator framework supports either
hop-by-hop or source routing. In the case of hop-by-hop routing,
the route determination is performed step-by-step in the switches,
i.e., each switch determines through which port it has to route a
given packet. In the case of source routing, the route deter-
mination is performed in the network adapter once for the entire
route from source to destination. The sequence of route hops, also
referred to as source route, is then carried in the header of the
network packets so that each switch can seize its route decision
from the packet header and act accordingly.

In both cases, the actual route decision can be based on algo-
rithms or on routing tables. For the network topologies of interest,
we have written specific linear routing algorithms that can be
plugged into the switch module when a particular topology is
being studied. The advantage of such algorithms is that they can
be made to reflect exactly the specifics of the routing in the real
system. The drawback is that they have to be written for every
new topology or class of topologies. Alternatively, or generally,
routing tables as are applied in many real systems can be used.
For this case, we use a central control module that can read a
routing table file and forward the corresponding table portions to
all switch modules (for hop-by-hop routing) or to all adapter
modules (for source routing) in the network.

If neither routing algorithms nor routing tables are available or
before they become available, the central module of our simulator
can also generate a routing table file itself for any arbitrary
network topology by using the OMNEST topology exploration
concepts. From each switch (for hop-by-hop routing) or each
adapter (for source routing) to each destination, the unweighted
single shortest-path function is applied to the topology object that
incorporates all switches and network adapters. This function is
based on the known shortest-path algorithm by Dijkstra. For lack
of a weighted shortest-path function in OMNEST, we optionally
place one or multiple dummy modules onto network links and
incorporate these in the topology object. These dummy nodes
have no function other than counting as a node in the OMNEST
topology object. In this way we can model a limited weighed
shortest-path algorithm by using the existing Dijkstra algorithm.
Furthermore, as there might exist multiple shortest paths, we need
to find all of them. For lack of a multiple shortest-path function in
OMNEST, we do the following. We determine the length of the
single shortest path from a specific source switch. Then we apply
the single path algorithm iteratively, starting from all neighbor
switches the ports of that specific switch lead to. Then, all shortest
paths found that have a length that is shorter by one than the
initially determined length are alternative shortest paths.

MPI semantic action
scheduler

MPI task replay machine

trace
reader

computation

Recv Send

Barrier Irecv Wait IsendReduce Allreduce Broadcast. . .

Figure 2. Task module architecture

In addition to having our simulator generate routing tables, we
can use tables generated externally by other means or tables
modified manually.

If multiple paths exist, independently of whether they are
determined by a table or by a specific algorithm, we have to apply
another step that selects one of the many possible paths. For this
we have numerous predetermined options, ranging from static via
random or round-robin path selection to state-dependent adaptive
schemes based on shortest queues or highest number of available
flow-control credits. Note that adaptive routing makes most sense
with hop-by-hop routing, which was our motivation to provide
hop-by-hop routing. Otherwise, source routing might be desirable
because many actual systems apply source routing. However, in
many cases, hop-by-hop and source routing are logically identical.

If virtual channels are used, routing may also include a final step
of selecting the right virtual channel for the next hop. Specific
algorithms for this are needed in certain topologies (although not
in fat-tree networks) to prevent cyclic dependency deadlocks.

2.5 Task Placement
The task-to-node placement is provided by assigning the number
identifying the task to a taskRank parameter of a particular node
in the OMNEST configuration file. This can be done explicitly
task-by-task such as
**.node[0].taskRank = 0
**.node[4].taskRank = 1
**.node[8].taskRank = 2

While this allows a truly arbitrary assignment of tasks, it might
become tedious for a regular assignment of a large number of
tasks. To simplify this, we alternatively use a function
assignTask() (defined in the OMNEST distributions file) that
automatically assigns all tasks of an application to nodes in a
predetermined way depending on the parameter of this function.
In this way, only one configuration line is necessary, such as
**.node[*].taskRank = assignTask(<parameter>)

where <parameter> is a number identifying one of various
predetermined schemes, such as sequential assignment (task i to
node i) or randomly shuffled assignment. With the help of one
additional parameter we can control the assignment of multiple
tasks to one node.

2.6 Application Traces
From various laboratories and supercomputer centers, we have
obtained a number of popular HPC application traces of different
sizes (number of tasks) from various application fields, such as
ocean modeling (HYCOM, POP), weather research and forecast
(WRF), shock-wave physics (CTH), and molecular dynamics,
fusion and transport physics (AMBER, CPMD, LAMMPS,
GYRO, SPPM, SWEEP3D, UMT2K). Because of their different
origins, these traces have more or less comprehensive formats
from different tracing tools. An example for such a tracing tool is
the Sequoia tool kit [5].

For the purpose of our simulator, we decided to use a simple trace
format derived from one of the formats we obtained. Our trace
reader can read this format directly. For other trace formats, we
decided to write separate programs (Perl scripts) for translating
the relevant subset of trace information from the original trace
into the format our trace reader understands.

In some cases, traces are very long and unwieldy although the
really interesting phase of the trace is relatively short. Then it is
necessary to negotiate with the trace provider for some way to
identify the interesting phase in the program and only trace this
phase. However, it is not trivial to start a trace in the middle of an
application. Because of the causal relationship among different
tasks, this must happen in a controlled way so that no task waits
for messages that have not been traced before.

For another set of applications in the field of weather forecast
(DWD, ECMWF T639, ECMWF 4DVar), we use synthesized
artificial traces that were generated by application experts with
separate programs (Python scripts).

Common to all application traces we have considered so far are
very wide message size distributions and similar characteristics in
the communication patterns. Message sizes may vary between one
Byte and many Megabytes. Figure 3 shows an exemplary
message-size histogram measured for the LAMMPS molecular
dynamics application. Because of the wide span, the message size
range is divided into logarithmically spaced cells in this diagram.

Traffic patterns typically exhibit much more near-neighborhood
than far-distance traffic and, when represented in a matrix,
generally diagonal patterns. The left diagram in Figure 4 shows a
typical example of such a traffic matrix for the LAMMPS appli-
cation. The high diagonal patterns essentially are made by long
messages, whereas the ground floor in this matrix is mainly
formed by the short messages. From this characteristic it becomes
clear that interconnection network topologies that favor near-
neighbor communication are preferable, which leads to the
topologies we are considering. However, this only makes sense if
the tasks are placed onto the system in sequential order as it is

Message Size [Bytes]

N
um

be
r

of
 M

es
sa

ge
s

1

10

100

1000

10000

1 10 100 1E3 1E4 1E5 1E6

Message Size Histogram

Figure 3. Message size histogram for LAMMPS application

Randomly shuffled task placementSequential task placement

0

128

64

96

32
Source

128

64
96

Traffic
[KB]

250

50

200

100

0

150

Destination
32

0

128

64

96

32
Source

128

64
96

Destination
32

Figure 4. Traffic matrix example for LAMMPS application

done in the left diagram in Figure 4. In contrast, the right diagram
shows how the traffic matrix would look if the tasks were placed
in a random way onto the system. In this case, the network
topology ideally would have to be equally fair to close and far-
distance communication patterns. As sequential task placement is
not always possible in a real system, we need to be able to study
the impact of different task placements.

2.7 Parallel Simulation Aspects
OMNEST supports parallel distributed simulation [6] provided
that some constraints are obeyed, as outlined in the OMNEST
manual or in [7]. The network must be partitioned into segments
that can be physically distributed. For this it is useful to define the
OMNEST network description as a structure of submodules rather
than as one flat network of basic modules. Our basic modules are
designed in such a way that they can be arbitrarily nested. For
example, relative references such as to the parent module are
avoided. The network submodules or sets thereof can then serve
as the parallel partitions. In some architectures, the partitioning is
naturally given by the physical packaging of the system. An
example of this is the hierarchical direct interconnect system
shown in Figure 6. In this model, the connectivity in hierarchy
level 1 is essentially on-board connectivity, in hierarchy level 2
board-to-board connectivity, and in hierarchy level 3 rack-to-rack
connectivity. In parallel simulations of this model, we used
parallel partitions of small sets of racks.

The requirement for a look-ahead time by the OMNEST parallel
simulation feature is sufficiently fulfilled by the fact that the only
connections between physical partitions are network links, which
are modeled realistically with a finite delay in any case.

In the process of preparing the simulator for parallel simulation,
some caution was required where module or gate objects nested in
other sub-modules are accessed. Some OMNEST APIs return the
intended object in a sequential simulation, but will return
placeholder modules or proxy gates if the target object is in
another partition of a parallel simulation. Similarly, when working
with OMNEST topology objects, a topology object of switch
modules, for example, contains all switch modules of the entire
system in a sequential simulation. In a parallel simulation, it
contains only the switch modules that are inside the current
partition. Understanding and circumventing these facts were
essential for successfully simulating in parallel.

2.8 Simulation Data Collection
While flits traverse the network, we record in each traversed
module various information such as queuing times, time stamps or
hop counts inside the OMNEST messages that represent the flits.
Once the flits reach the egress side of the network adapter, all
kinds of statistical results can be collected from the information
carried in the flits. Overall system-wide statistics are collected by
default. Point-to-point statistics (i.e., per source/destination pair)
can be collected on demand for measures of interest. The statistics
collection is performed in a separate statistical measurement
module. In case of a sequential simulation there is only one such
statistical measurement module, whereas in a parallel simulation
we apply decentralized statistics collection by placing one
statistical module in each partition. The results collected in this
way in a decentralized manner are then sent periodically to the
single central control module, where they are consolidated and
printed as optionally periodic and eventually as final results.

Periodic results allow the observation of changes of certain
measures during the run time of an application (see Section 2.9).
The granularity of measurement periods is a parameter. In large
systems, some caution is necessary in determining the period and
the measures of interest to prevent the generation of impracticably
large amounts of data.

2.9 Simulation Data Visualization
Simulation data visualization helps understand the communication
patterns of MPI applications at run time. Our simulator enables
trace collection of point-to-point (P2P) and collective operations
among the nodes. For each simulation step of the application, we
collect internode I/O operations (the number of send/receive
operations), mean message size, standard deviation and total bytes
transferred. We also collect this information for collective opera-
tions and for a combination of P2P and collective. Furthermore,
we track when load balancing is initiated. We also collect data for
the case when multiple tasks are on a node. The amount of I/O
versus data that leaves the node is a useful indication of how the
network load changes when SMP nodes are used.

Such data can then be plotted into frames of pictures, which can
be sequenced to animate the run-time communication operations
in a movie-like manner. Figure 5 shows a sample frame of the
animation of I/O operation distribution in the CTH application, a
popular shock-wave physics program developed by Sandia Natio-
nal Laboratories, USA. With data visualization, one can easily
spot where the network hotspots are. Then optimal task placement
and adaptive routing can be used to fine-tune the system.

2.10 Simulator Portability
The parallel version of our simulator runs on a cluster of SMP
machines with the Parallel Operating Environment (POE) of the
AIX® 3 operating system. The simulator also runs on x86
machines with either Linux®4 or Windows®5 operating systems.
It is even possible to run up to about 1000 nodes on a simple

3 AIX is a registered trademark of International Business Machines

Corporation in the United States, other countries, or both.
4 Linux is a registered trademark of Linus Torvalds in the United States,

other countries, or both.
5 Windows is a registered trademark of Microsoft Corporation in the

United States, other countries, or both.

Figure 5. Point-to-point I/O operations of CTH application
with 176 tasks

notebook computer. The sequential version of our simulator also
works on those platforms. We believe the simulator can also be
ported to other hardware and operating systems.

3. CASE STUDIES
3.1 Interconnect Design
One of the main goals of our simulation environment is to support
the design of the interconnection network for an HPC system
under development. Simulations of all the options under
discussion help decide on the appropriate network topology,
switch architecture, routing protocol, and so on. In this context,
we applied our tool to study HPC systems with fat-tree inter-
connection networks, as shown in Figure 1, and variants of this
architecture. Examples of questions in this context are:

• What is the optimum size of switch modules and number of fat-
tree levels?

• What is the required link bandwidth?
• How should the switch buffers be dimensioned?
• How should the multi-path property of the fat tree be utilized in

the routing protocol?
• Can the number of switch modules in higher fat-tree levels be

reduced?

A case study related to the last question is exemplarily addressed
in Section 3.2 below.

An alternative interconnect architecture we studied is the
hierarchical direct interconnect architecture as illustrated in
Figure 6. In this architecture, each computing node is assumed to
be a multi-core chip, i.e., chip multiprocessors (CMPs). A switch
module is associated with one or a few computing nodes. A small
set of switch modules are directly and fully interconnected via a
first hierarchy level of interconnection links (level-1 links)

forming first-level groups, e.g., boards. Multiple boards are
directly and fully interconnected via a second hierarchy level of
interconnection links (level-2 links) forming second-level groups,
e.g., racks. Finally, multiple racks are directly and fully intercon-
nected via a third hierarchy level of interconnection links (level-3
links) forming the third-level group, which is the full system. A
property of this architecture is that routing between arbitrary
nodes may involve multiple intermediate hops via links of the
different hierarchy levels. For example, to reach a destination in
another rack, a level-1 link hop may be required to reach the
appropriate switch module that has a level-2 link to the right first-
level group (board) that has a level-3 link to the right second-level
group (destination rack) and vice versa on the destination rack.
Nonetheless, such a hierarchical complete-graph topology tries to
balance the number of hops to reach any other node and the total
number of links required to build the network. Examples for
questions regarding this architecture are:

• What is the required link bandwidth for each hierarchy level?
• How should the switch buffers be dimensioned per link type?
• How can cyclic dependency deadlocks be prevented?
• What is the routing protocol? Should only direct/shortest routes

be used or can indirect/longer routes improve performance?

A case study related to the last question is exemplarily described
in Section 3.3 below.

3.2 Fat Tree Case Study
An ideal full fat-tree network (Figure 1) provides the full
bisectional bandwidth in all fat-tree levels. In other words, the
number of links and the aggregate link bandwidth between levels
are constant, and the number of switch modules is the same in all
levels except that in the highest level only half as many are
needed (here all switch ports are used as downward ports). As the
number of levels that must be traversed is a function of the
source/destination distance, and HPC applications typically have
more near-neighbor than far-distance communication, bandwidth
and cost could eventually be saved by reducing the bandwidth or
the number of switch modules in the higher levels. The question is
how far can this reduction go without significantly impacting per-
formance?

To study this, we performed a series of end-to-end simulations of
a fat-tree-based HPC system using some real HPC application
traces. Gradually we reduced the bandwidth of each fat-tree level
by 25%, 50% and 75% relative to the preceding level. In addition,
we studied the impact of different switch module sizes and task-
to-node placements.

Figure 7 shows some exemplary results obtained from simulations
with one particular HPC application (LAMMPS, a molecular
dynamics simulator). The results for other applications are
conceptually very similar.

The diagrams show the measured mean system delay of flits as a
function of the bandwidth reduction relative to the preceding fat-
tree level. The upper diagram is for sequential task-to-node
placement (task i to node i), the lower diagram for randomly
shuffled task placement. Three different switch system sizes are
considered. The tables inserted list the percentages of traffic
(number of flits) that traverse up to each of the fat-tree levels.

As we can see, a bandwidth reduction of up to 50% appears
feasible if the switch modules are larger than 8×8. The larger the

..

rack

interconnection network (hierarchical direct interconnect example)

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

switch
module

..

… … … … … … … …

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

network
adapter
module

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

.

node module

proc proc proc

system kernel

bus arbiter

...

task task task..

network
adapter
module

.

task0

MPI application trace files

task1 task2 task3 taskM

configurable task-to-node placement via OMNEST configuration file

full connectivity (rack-to-rack)

board boardfull connectivity

..

.. ..

..

..

..

..

.. ..

....

.. ...

......

hierarchy
level 3

level 2

level 1

full connectivity (board-to-board)

Figure 6. HPC system model example with hierarchical direct
interconnection network

switches, the more bandwidth reduction is tolerable. This relative
behavior appears to be independent of the task placement,
although the absolute system delay is significantly worse for
random task placement. The tables show that a large portion of the
traffic travels up all the levels for random task placement, whereas
for sequential placement it is the opposite. In fact, sequential task
placement has turned out to be the optimum on fat trees for about
a dozen of scientific HPC applications we have simulated so far.

3.3 Indirect Routing Study
In the hierarchical direct interconnection model (Figure 6), there
is only one shortest path between any pair of nodes on different
racks. The single highest-hierarchy link (rack-to-rack link or
level-3 link) on this direct route could become a bandwidth
bottleneck. More bandwidth could be made available by using
additional alternative routes that indirectly lead via third racks.
However, these indirect routes have a longer delay because they
include more hops, particularly two rack-to-rack hops. Further-
more, alternative indirect routing involves a complexity and cost
issue. The question is whether this is worth the effort and under
which circumstances.

To study this, we performed a set of simulations based on the
hierarchical direct interconnection model. We configured a system
of five racks and placed an HPC application across the nodes of
two of the racks: Half of the application tasks were placed on the
nodes of one rack, and the other half on the nodes of the other
rack. Hence, when using only direct routes in a first simulation,
half of the tasks have to talk to the other half of the tasks via a
single rack-to-rack link. In three more simulation runs, we then
allowed additional indirect routes via one, two or three other
racks. To have background traffic on these “detour” racks, we
placed additional application partitions on each of them.

Another consideration is that if unbalanced direct and indirect
routes are used simultaneously, routing with static route selection
would distribute the traffic equally among the different paths that
might not be the optimum paths. Hence, we also considered the
option of adaptive routing that selects the various possible paths
based on switch-queue occupancies.

Figure 8 shows application run-time results obtained from
simulations with the LAMMPS application, which are again
conceptually similar to results for some other applications we
tested. The diagram shows the application run time normalized to
the run time of the case when only direct routes are used. Further-
more, we applied here the feature of setting the processor speed to
infinite to see the pure impact of the network. Hence the
application run time is exclusively the time spent for I/O and in
the network. We can see that allowing one additional indirect
route to the direct route does not yet provide an improvement. On
the contrary, for static routing, half of the traffic through the long
indirect route is too much and causes a deterioration that can
hardly be compensated if adaptive routing were applied. However,
for more than one additional indirect route, significant improve-
ments can be achieved in any case, in particular when combined
with adaptive routing.

For comparison, we made another simulation in which we
artificially increased the bandwidth of the rack-to-rack links by
using many of them in parallel so that the system bottleneck is
shifted to parts of the system inside the racks. The result of this
case yields a kind of ideal bound, indicated by a dashed blue line
at the lower portion in the diagram. From this, we can expect that
providing the capability for many additional indirect routes will
probably not be worth the effort.

Certainly, for a definitive answer on the value of indirect routing,
more studies are necessary. Indirect routing may hurt the
performance of some other applications, as it uses more links than
direct routing for each route, and hence may reduce the effective
interconnect bandwidth and increase latency for other applica-
tions.

3.4 GUPS Benchmark Study
The random access GUPS (Giga updates per second) benchmark
from the HPC Challenge suite [4] is a very important performance
measure for HPC systems. Although it does not really require
trace-driven simulation and the GUPS performance can eventually
be obtained analytically, GUPS simulations turn out to be very
useful for several reasons. For lack of large enough application

0

0.5

1

1.5

direct route direct route and
1 indirect route

direct route and
2 indirect routes

direct route and
3 indirect routes

static routing

adaptive routing

ideal rack-to-rack bandwidth

Rack-to-rack routing

A
pp

lic
at

io
n

ru
n

tim
e

(n
or

m
al

iz
e

d)

Figure 8. Indirect routing results for LAMMPS application

0

0.5

1

1.5

2

2.5

M
ea

n
sy

st
em

 d
el

ay
 o

f f
lit

s
[u

s]

75%50%25%0%

Bandwidth reduction relative to previous fat tree level

0

20

40

60

80

100

M
ea

n
sy

st
em

 d
el

ay
 o

f f
lit

s
[u

s]

Sequential task placement

Randomly shuffled task placement

8x8 switches

16x16 switches

32x32 switches

8x8 switches

16x16 switches

32x32 switches

32x3216x168x8switch module size

64.5%57.0%43.0%% traffic up to 1st level
35.5%26.9%21.6%% traffic up to 2nd level

16.1%19.3%% traffic up to 3rd level
16.1%% traffic up to 4th level

32x3216x168x8switch module size

10.6%5.0%1.6%% traffic up to 1st level
89.4%43.8%8.3%% traffic up to 2nd level

51.2%38.5%% traffic up to 3rd level

51.6%% traffic up to 4th level

Figure 7. Fat-tree results for LAMMPS application

traces, a GUPS simulation with synthetically generated traffic
allows the simulation of the full-scale system. Thereby the parallel
simulation scalability can be tested without a need for application
traces. Furthermore, effects can be studied and validated that only
occur at very large system sizes. Finally, GUPS simulation results
can validate the correctness of analytical predictions as well as the
correctness of large parts of the simulator.

We have performed parallel GUPS simulations of the hierarchical
direct interconnection model (Figure 6). Thereby we were able to
validate predicted analytical results up to a system scale of 65,536
nodes. This included the validation of a predicted discontinuity
effect at a very large system size above which the second-level
connectivity becomes the system bottleneck, whereas below that
size the third-level connectivity was the system bottleneck.
Furthermore, we observed that the overall GUPS throughput tends
to stabilize sooner than individual port buffer and link utilizations
across the interconnection network for the uniform GUPS traffic
patterns in a large-scale system.

On the one hand, we observed a surprisingly good speedup by
parallel simulation. We distributed a small system that originally
ran on a single processor onto a 16-node cluster of the same
processors. Thereby we observed a superlinear speedup on the
order of 17 thanks to the 16-fold aggregate cache capacity and
efficient model partitioning. On the other hand, GUPS simulation
of a large-scale system of 65,536 nodes certainly requires
considerably more computing resources. For example, we used a
32-node cluster with 512 GByte aggregate memory for the full-
system simulation. It takes about one hour wall-clock time to

simulate ten microseconds at high GUPS injection rate (i.e., in
system saturation). Low injection rate or large packet size
simulations run faster.

3.5 MPI Application Performance Projection
We have used our simulator to project the performance of some
mission-partner MPI applications running on a projected future
supercomputer system. One of the applications is ECMWF
(European Centre for Medium-range Weather Forecasts).
ECMWF is a complicated application with various MPI commu-
nication patterns. It has proved to be network-intensive on some
existing systems.

We break down ECMWF into its representative MPI communi-
cation patterns and simulate them on the three-level hierarchically
fully connected interconnect (Figure 6). We compare the execu-
tion time and throughput of these MPI patterns of configurations
with 1, 4 and 16 level-3 links per pair of level-3 groups (racks).
Figure 9 shows the results.

We observe a significant improvement in execution time and
throughput when we increase from one to four level-3 links per
pair of level-2 groups. However, we see only negligible improve-
ment when we further increase to 16 level-3 links per pair of
level-2 groups. The experiment shows that a configuration of four
level-3 links per pair of level-2 groups is sufficient to meet
ECMWF’s network requirement. Hence, we can downsize the
network cost of this application without performance loss.
Alternatively, the extra level-3 links can be shut down to reduce
power consumption.

4. RELATED WORK
Because of space limitations, we only discuss related work that
most closely resembles our research.

IBM’s Blue Gene®/L6 team used an interconnection simulator [8]
to model Blue Gene/L’s three-dimensional torus interconnection
network during the design phase of the project. They selected a
shared-memory parallel simulation approach to interconnect
modeling. Message-passing calls of applications are passed to the
simulator via traces, which are collected using an IBM unified
trace environment trace-capture utility that runs on IBM
supercomputer machines. Traces of up to several hundreds of
nodes were collected. They used time-driven parallel simulation.
In our work, we use the MPI interface to parallelize our discrete-
event interconnect simulator. We expect the availability of
commodity clusters and the scalability of MPI libraries to make
our approach more cost-effective. Our trace synthesizer is able to
generate traces for virtually any number of MPI threads. In addi-
tion, our simulator features the capability of placing MPI tasks
arbitrarily, which can be very useful to tune MPI application on
future systems.

BigSim [9] is an interconnect simulator to help optimize
applications for larger-scale HPC systems. It uses optimistic
synchronization to parallelize the simulation. In our work, we use
detailed interconnect models to help also the interconnection
network design. We use conservative synchronization to improve
development productivity. Furthermore, as conservative synchro-
nization minimizes load imbalance in the simulation, our

6 IBM and Blue Gene are registered trademarks of International Business

Machines Corporation in the United States, other countries, or both.

0

0.004

0.008

0.012

0.016
br

oa
dc

re
al

_7
0K

ga
th

_1
00

K

gp
no

rm
1_

14
K

gp
no

rm
1_

2K

sl
co

m
m

1_
1.

2M

sl
co

m
m

1_
3

0K

sl
co

m
m

2_
0.

5M

sl
co

m
m

2
_5

K

tr
gt

ol
_3

00
K

tr
gt

ol
_3

0K

tr
lto

g_
30

0K

tr
lto

g_
30

K

tr
lto

m
_1

10
0K

tr
lto

m
_5

00
K

av
g

E
xe

cu
tio

n
T

im
e

(s
ec

)

#L3=1 #L3=4 #L3=16

(a)

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

br
oa

dc
re

al
_7

0K

ga
th

_1
00

K

gp
no

rm
1_

14
K

gp
no

rm
1_

2K

sl
co

m
m

1_
1.

2M

sl
co

m
m

1_
30

K

sl
co

m
m

2_
0.

5M

sl
co

m
m

2_
5K

tr
gt

ol
_3

00
K

tr
gt

ol
_3

0K

tr
lto

g_
30

0K

tr
lto

g_
30

K

tr
lto

m
_1

10
0K

tr
lto

m
_5

00
K

av
g

T
hr

ou
gh

pu
t (

B
yt

es
/s

ec
)

(b)

Figure 9. Run time and throughput of MPI communication
patterns in ECMWF in the three-level hierarchically fully

connected interconnect (Figure 6).
#L3 means the number of level-3 links.

approach can simulate very large-scale systems. In our work, we
also collect MPI traces from real machines or synthesize them
based on detailed application knowledge.

Dimemas from UPC [10] is an MPI-trace-driven simulator
primarily intended to help users develop and tune parallel MPI
applications. For that purpose it models the nodes of a parallel
machine and the applications running on them at a similar
abstraction level as we do. However the network is modeled at a
much higher abstraction level in the form of a set of buses. Hence
Dimemas is not suited for studying the impact of different net-
work topologies, switch architectures or network protocols, nor
would it be useful to help the design and optimization of the
interconnection network, the switches and network protocols. A
Dimemas simulation produces results in the form of another trace
file that serves as input for separate performance analysis tools
such as their powerful visualizing tool Paraver.

Sharapov et al. [11] presented a performance estimation methodo-
logy for an HPC application running on a future HPC hardware
architecture. It applies a hierarchical modeling method by
combining queuing theory, such as the mean-value analysis
model, with cycle-accurate simulation. Their interconnect model
is an analytical model, whereas the processor micro-architecture
model is cycle-accurate. They analyzed the application behavior
with another workload characterization process.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have demonstrated using our MARS tool that
end-to-end simulation is feasible for HPC systems with hundreds
of thousands of processors. The tool maintains reasonable trace-
driven simulation details of both the processors and the inter-
connection network. It features several network topologies,
flexible routing schemes, arbitrary application task placement,
point-to-point statistics collection, and data visualization. With a
few case studies, we showed that this tool is very useful for high-
level system design, performance projection, and application
tuning of future HPC systems.

Currently our models incorporate feedback between the network
and the MPI-trace execution by flow control. Saturation trees
resulting from heavy congestion would require congestion
management that throttles the injection rate. We plan to imple-
ment and study congestion control with our tool to help under-
stand this difficult control problem under discussion in the HPC
community.

To expand the capabilities for analyzing the large amount of
possible simulation results of HPC simulations, we also plan to
add a feature to generate result traces in a format that can directly
be used by already existing performance analysis and visualization
tools, such as the UPC Paraver tool.

Leveraging modeling details and simulation speed of MARS is
challenging. Also, minimizing the limitation on interactions
between MPI tasks in trace-driven simulation remains a challenge.

6. ACKNOWLEDGMENTS
This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under contract No.
NBCH30390004. Details presented in this paper may be covered
by existing patents or pending patent applications.

The authors would also like to thank Lydia Chen, Don DeSota,
and Javier Navaridas for valuable discussions and contributions to
the work presented in this paper.

7. REFERENCES
[1] Peterson, J. L., Bohrer, P. J., Chen, L., Elnozahy, E. N.,

Gheith, A., Jewell, R. H., Kistler, M. D., Maeurer, T. R.,
Malone, S. A., Murrell, D. B., Needel, N., Rajamani, K.,
Rinaldi, M. A., Simpson, R. O., Sudeep, K., Zhang L.
Application of full-system simulation in exploratory system
design and development. IBM Journal of Research and
Development, Vol. 50, No. 2/3, March/May 2006, pp. 321-
332.

[2] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren,
D., Hallberg, G., Hogberg, J., Larsson, F., Moestedt, A.,
Werner, B. Simics: A full system simulation platform. IEEE
Computer, Vol. 35, No. 2, Feb. 2002, pp. 50-58.

[3] Varga, A. The OMNeT++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference
(ESM' 01), Prague, Czech Republic, June 2001.

[4] Luszczek, P., Bailey, D., Dongarra, J., Kepner, J., Lucas, R.,
Rabenseifner, R., Takahashi, D. The HPC Challenge (HPCC)
Benchmark Suite. SC06 Conference Tutorial, IEEE, Tampa,
Florida, Nov. 2006.

[5] Vetter, J. S., Bhatia, N., Grobelny, E. M., Roth, P. C.
Capturing petascale application characteristics with the
Sequoia toolkit. In Proceedings of the International Parallel
Computing Conference (ParCo ‘05), Malaga, Spain, 2005.

[6] Sekercioglu, Y. A., Varga, A., Egan, G.K. Parallel simulation
made easy with OMNeT++. In Proceedings of the European
Simulation Symposium (ESS ‘03), Delft, The Netherlands,
Oct. 2003.

[7] Varga, A., Sekercioglu, Y. A., Egan, G. K. A practical
efficiency criterion for the null message algorithm. In
Proceedings of the European Simulation Symposium (ESS
‘03), Delft, The Netherlands, Oct. 2003.

[8] Adiga, N. R., Blumrich, M. A., Chen, D., Coteus, P., Gara,
A., Giampapa, M. E., Heidelberger, P., Singh, S.,
Steinmacher-Burow, B. D., Takken, T., Tsao, M., Vranas, P.
Blue Gene/L torus interconnection network. IBM Journal of
Research and Development, Vol. 49, No. 2/3, March/May
2005, pp. 265-276.

[9] Choudhury, N., Mehta, Y., Wilmarth, T. L., Bohm, E. J.,
Kal´e, L. V. Scaling an optimistic parallel simulation of
largescale interconnection networks. In Proceedings of the
2005 Winter Simulation Conference (WSC ’05), ACM, New
York, NY, USA, 2005, pp. 591-600.

[10] Badia, R. M., Labarta, J., Gimenez, J., Escale, F. Dimemas:
Predicting MPI applications behavior in grid environments.
In Proceedings of the Workshop on Grid Applications and
Programming Tools (GGF ’03), 2003.

[11] Sharapov, I., Kroeger, R., Delamarter, G., Cheveresan, R.,
Ramsay, M. A case study in top-down performance
estimation for a large-scale parallel application. In
Proceedings of the 2006 ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP
’06), New York City, NY, USA, 2006, pp. 81-89.

