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ABSTRACT 
We present an end-to-end simulation framework that is capable of 
simulating High-Performance Computing (HPC) systems with 
hundreds of thousands of interconnected processors. The tool 
applies discrete event simulation and is driven by real-world 
application traces. We refer to it as MARS (MPI Application 
Replay network Simulator). It maintains reasonable simulation 
details of both the processors in general and specifically the inter-
connection network.  Among other things, it features several 
network topologies, flexible routing schemes, arbitrary application 
task placement, point-to-point statistics collection, and data 
visualization. With a few case studies, we demonstrate the 
usefulness of this tool for assisting high-level system design as 
well as for performance projection and application tuning of 
future HPC systems. 

Categories and Subject Descriptors 
C.2.1 [Computer Systems Organization]: Computer-
communication networks – Network architecture and design 

C.4 [Performance of systems]: Design studies, modeling 
techniques  

I.6.8 [Simulation and Modeling]: Type of Simulation – Discrete 
event, parallel 

General Terms 
Performance, Design, Experimentation. 

Keywords 
High-performance computing, end-to-end simulation, intercon-
nection network. 

1. INTRODUCTION 
The next generation of High-Performance Computing (HPC) 
systems will be distributed systems with hundreds of thousands of 
processing nodes interconnected via large packet-switched 
interconnection networks. In the design and development of such 

new systems, accompanying performance modeling by simulation 
is indispensable to evaluate the system design options and to help 
optimize the performance of the processors, the interconnection 
network and eventually the entire system, including software and 
HPC applications. Simulation of such huge systems is challenging 
and needs new approaches. 

On the processor side, there are established methods and tools to 
simulate complete systems including the applications running on 
the processors. Execution-driven full-system simulation is applied 
by modeling processors and applications very accurately at a 
degree of detail down to the clock and instruction level (e.g. 
MAMBO [1], SIMICS [2]). In this way, precise application 
execution times, IPCs (Instruction per Cycle), cache miss rates, 
etc. can be obtained, which are the preferred performance measure 
for computing systems. Although one can simulate individual pro-
cessors or small clusters of processors in this way, the degree of 
detail does not allow the scaling of this kind of simulation to HPC 
systems of many thousands of interconnected processors: This 
would be too time- and resource-consuming, if not even 
practically impossible. 

On the other hand, there is the well-established field of switch and 
network simulation, in particular in the telecom area. In this field, 
discrete event-driven simulation is typically applied at a higher 
degree of abstraction by modeling switches or networks of 
switches as queuing systems at packet-level granularity. Hence 
such network simulations can reasonably scale to thousands of 
network ports on reasonably-sized computers. However, there the 
main intention is to obtain throughput and delay statistics for 
synthetic statistical traffic models. While this might be sufficient 
for telecom applications, it is not suitable for the very different 
characteristics of HPC interconnect traffic or for obtaining appli-
cation benchmarks. 

In a first phase of system design, the individual simulation 
methods for processors and for switches or interconnection 
networks still are very good means for optimizing the respective 
subsystems. However, separately optimized subsystems may not 
necessarily yield an overall system optimum from the performance 
and cost point of view. Furthermore, the impact of different 
network topologies, switch parameters, link and network 
parameters, and routing, flow control, congestion control and 
deadlock prevention algorithms on the run time of real-world 
HPC applications cannot be studied by separate simulations of 
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processors and network. The same holds for different ways to 
place application tasks to system nodes. All these network-related 
aspects are becoming increasingly important so that the network 
performance can keep up with the processor performance under 
proliferating system size. Too little attention has been paid to 
these network-related aspects in prior simulation work that 
focused on the processor side. Hence, end-to-end simulation with 
sufficient details on both the processor side (including real HPC 
applications) and the network is desirable for a second phase of 
system optimization. 

However, large-scale end-to-end simulation of HPC systems 
running benchmark applications on hundreds of thousands of 
processors communicating across a large interconnection network 
is a challenge at the same level of detail as is required for system 
design and development. This requires the right level of abstrac-
tion, an appropriate, efficient “light-weight” simulation tool—a 
tool that can flexibly cope with the numerous design alternatives 
that may arise during system design, and a tool that allows 
distributed parallel simulation to cope with the very large scale. 

The MARS framework is the result of our effort towards a full-
system end-to-end simulation of versions of the PERCS2 HPC 
architecture. We decided to build on an existing, event-driven 
network simulation environment we had previously developed 
and used for switch and network simulations in telecom 
applications. Based on the efficient and flexible OMNEST (also 
known as OMNeT++ [3]) framework, this simulator allowed the 
simulation of multistage fat-tree or mesh-type packet-switching 
networks driven by statistical traffic at the appropriate level of 
detail. We extended this tool to support end-to-end coverage by 
replacing the existing statistical packet generators with a new 
abstract computing node model that is driven by real-world 
application traces. For the larger system sizes, we newly exploited 
the OMNEST parallel simulation capability. 

As the Message Passing Interface (MPI) standard is pervasively 
used in HPC applications, our application traces are MPI traces, 
i.e., traces of the MPI calls in the application software. The trace 
files are recorded per task of the application on a real system that 
should be similar to the target system, e.g., a previous-generation 
system. Alternatively, trace files can be generated synthetically 
based on deep application knowledge. Our simulator allows 
arbitrary placement of the tasks onto the system nodes, i.e., the 
replay of a particular task trace file can be associated to any 
arbitrary computing node in the system. The nodes replay the 
associated trace files by generating the appropriate semantic 
actions, which eventually cause I/O messages to be sent or 
received via the interconnection network or computing time to be 
spent in the node itself. The computing time is determined by 
parameters that account for the processor differences between the 
system traced and the simulated target system. To precisely 
determine these parameters requires the expertise of the processor 
developers and/or comparisons with detailed full-system simula-
tions (MAMBO) of a single target processor. Packets injected into 
the network experience the full effects of the network protocols 
under investigation. The network time is determined by the 
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resulting queuing times and link delays in the simulated network. 
By replaying application task traces in a semantically correct 
way—as opposed to just pushing static traffic traces into the 
network, our model accounts for the impact of the network loop, 
i.e., responses from peer tasks are waited for to unlock subsequent 
transmissions reactively. It is difficult, however, to precisely 
differentiate potential effects of waiting-time-dependent 
application behavior, which is a well-known issue for trace-driven 
simulation. 

To be useful for the high-level system design of future HPC 
systems as well for application tuning, the MARS framework 
maintains an appropriate level of trace-driven simulation details of 
both the processors in general and specifically the interconnection 
network. Among other things, it features several network topo-
logies, flexible processor, switch and network adapter models, a 
rich set of routing schemes, arbitrary application task placement, 
point-to-point statistics collection, and data visualization. First 
applications of our tool allowed us to provide useful feedback to 
system designers. In the following, we demonstrate this with a few 
case studies. Thanks to the possibility to simulate full-size 
systems by parallel simulation, we were able to validate the 
correct full-system function and determine the full-system 
performance, which in turn enabled the validation of analytical 
performance estimates. We have simulated up to 65,536 nodes, 
each with eight processor cores, on a 32-way SMP cluster. We 
believe that even larger simulations are possible. 

Our paper is organized as follows. In Section 2 we describe the 
simulation methodology and the underlying simulator framework 
in more detail. In Section 3 we present exemplary results from 
four case studies to illustrate the capabilities of our simulation 
environment. Because of space limitation, we skip detailed 
quantitative descriptions of the simulated system configurations 
and application characteristics. Instead we focus on qualitative 
results. In Section 4, we briefly discuss related work, followed by 
conclusions and a brief outlook in Section 5. 

2. SIMULATION METHODOLOGY 
2.1 Simulation Framework 
The MARS simulation framework comprises the following set of 
our own and/or third-party components: 

• the OMNEST discrete event simulation core with parallel 
simulation support, 

• network modules describing the overall system model topology, 
i.e., its subcomponents and the way these are interconnected, 

• pluggable modules modeling the subcomponents of the HPC 
system, i.e., switches, network adapters and computing nodes, 

• tools for application-trace collection and/or trace synthesis, 
• data/result tracing modules and visualization tools. 

In the following we describe the simulation framework, its 
components and further aspects of the simulation methodology in 
more detail by using an underlying system model of an exemplary 
HPC system with a fat tree interconnection network. 

2.2 Simulation Model 
Figure 1 illustrates a high-level overview of the exemplary HPC 
simulation system model. For the network part, our simulation 
framework builds around two basic, flexibly configurable and 
replicable OMNEST modules, i.e., a switch module and a network 



adapter module. These two basic modules are designed in such a 
way that any arbitrary interconnection network topology can be 
flexibly arranged in an OMNEST network description by explicit 
or algorithmic specification of the connections between multiple 
instantiations of the switch and network adapter modules. Over 
time we have created a set of network descriptions for the major 
network topologies under discussion in the HPC community and 
in our own projects. For illustration purpose, Figure 1 shows a 
particular three-level fat-tree topology. Our corresponding 
OMNEST network description is defined universally for fat trees 
up to a reasonable maximum number of fat-tree stages. Using 
conditional module array sizes and conditional connections allows 
us to parameterize the actually desired number of levels. 

The origin of our network simulator was limited to synthetic 
statistical traffic. For this purpose, each network adapter was fed 
by a statistical packet generator module. Certainly, this continues 
to be useful for modeling random-access benchmarks, such as the 
GUPS (Giga updates per second) benchmark [4]. On the other 
hand, our new extension for end-to-end simulation replaces the 
original packet generator module with a new, generic computing-
node module that is driven by application traces. To achieve 
simulation scalability, this node module is confined to a 
reasonable level of abstraction. As illustrated in Figure 1, each 
node module is a compound OMNEST module that models 
multiple processor cores interconnected by a bus model. Further-
more, one or multiple application tasks can run concurrently on 
the node’s processors. This is controlled by a system kernel. The 
corresponding task modules perform semantic actions driven by 
an application trace file. In the OMNEST configuration file, each 
task of an application, i.e., its associated trace file, can be 

assigned to a task module of an arbitrary node module. Thereby 
one or multiple tasks can be placed onto the same node. 
Optionally, each task of an application can be placed to multiple 
nodes. In this way, multiple simultaneously running partitions of 
the same application can be modeled.  

Obeying the causality between messages, the task modules replay 
the associated trace files by generating the appropriate semantic 
actions that eventually cause computing time to be simulated in 
the node itself or MPI messages to be sent or received via a 
network adapter across the network of switches. MPI messages 
are sent to the ingress part of the network adapter, where they are 
segmented into smaller network packets referred to as flits. The 
flits traverse the switch modules in multiple hops before they 
eventually reach the egress part of the network adapter, where 
they are reassembled into the original MPI messages. These are 
forwarded to the receiving node module, where MPI receive 
actions are scheduled to wait for them. 

2.3 Model Subcomponents 
2.3.1 Switch module 
The switch module has a flexible combined input- and output-
buffered architecture that can be configured into most popular 
switch architectures by parameterization. The size of the switch, 
the number and arrangement of logical queues, buffer sizes, 
scheduling options, the number of virtual circuits and priority 
classes, port speeds, or the internal speedup and delays are 
examples of switch parameters. Further functions supported are 
credit-based flow control, numerous routing options, and 
deadlock-prevention mechanisms. In simulations accompanying 
the development of new switches, it frequently happens that new 
functions need to be added or others changed. This is flexibly 
possible in OMNEST because the lowest-level simple module 
functions are programmed in C++. For other specific cases we 
have also simplified switch models, for example, a generic 
InfiniBand switch module. 

2.3.2 Network adapter module 
The network adapter module consists of an ingress and egress 
part. Similar to the switch module, most realistic adapter architec-
tures can be configured by parameterization. The number and 
arrangement of logical queues, buffer sizes, scheduling options, 
and link speed are examples of network adapter parameters.  

The ingress part of the network adapter performs the segmentation 
of MPI messages into network packets, the flits. Correspondingly, 
the egress part performs the reassembly of flits into MPI 
messages. Optionally, a re-sequencing function is provided to 
account for the fact that flows of packets can get out of sequence 
in multi-path network topologies. Understanding the overhead of 
re-sequencing is important because it may destroy expected gains 
of sophisticated multi-path routing schemes. 

2.3.3 Node module 
As described above, the node module provides a model for 
multiple processor cores and multiple trace-driven tasks running 
on the processor cores. There are a number of parameters that 
determine the processor speed, such as the system bus bandwidth, 
the number of memory controllers, HWMMIO (Hardware 
Memory Mapped IO) latency, and system call latencies relative to 
the parameters of the real system on which the application traces 
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Figure 1.  HPC system model example with fat-tree 
interconnection network 



are recorded. One may also set these parameters to project a future 
system configuration.  

An interesting option is to set the processor speed to infinite. In 
this way, runtime results are obtained that exclusively contain the 
portion of time spent for I/O and in the network. This allows the 
impact of the network to be crystallized out and enables good 
comparisons between different network options. Furthermore, 
based on the comparison to the runtime with the real, finite 
processor speed, one can judge the balance between processing 
and networking, i.e., whether a system is processing-limited, 
network-limited, or balanced. 

2.3.4 Task module 
The key submodule of the node module is the task module. Its 
high-level architecture is illustrated in Figure 2. A trace reader 
function reads the lines from the trace file that is assigned to this 
particular task and node. As there might exist thousands of trace 
files that need to be accessed constantly, we apply a caching 
mechanism to this trace-reading function. 

 
From a read trace line, a semantic action scheduler determines 
which kind of MPI-call-related module needs to be called or 
whether computation time needs to be simulated. For each MPI 
call type that may occur, a corresponding module must be 
provided. Point-to-point MPI calls directly involve a Send or Recv 
operation to be performed. A Send operation eventually causes an 
OMNEST message to be created that represents the MPI message. 
The message size is determined by the size indicated in the trace 
line. Because the target of an MPI message is another task rather 
than a network address as required for routing in the network, the 
destination network address for the message created has to be 
determined by a specific function that finds the network address 
of the node module the target task is placed to. On the other hand, 
a Recv operation waits for actual reception of a corresponding 
message. In the case of MPI collectives, the corresponding 
modules simulate what the MPI library supposedly does: For 
example, a Broadcast operation might be decomposed into 
multiple sequential point-to-point actions.  

For the MPI application traces we have studied so far, we only 
needed to support about a dozen different MPI calls. In general, 
however, there are two problems with the approach. One is that 
MPI defines many dozens of MPI call types, and it simply is a lot 
of work to write all the corresponding modules, some of which 
may never be needed. Second, a specific module implementation 
might not be appropriate if another MPI library is used. The 
efficiency of different MPI library implementations varies, and 

some are optimized for the specific network topology of the 
system they are provided for. Hence, as far as possible, we try to 
obtain traces that are not taken at the usual MPI call level but 
rather at a lower level, where eventual point-to-point messages 
can be recorded. This has the advantage that MPI-call-related 
modules are no longer needed in our task module. Second, the 
simulator implementation remains independent of the specifics of 
the individual MPI library implementations, although the simula-
tion results still reflect the differences in the MPI software 
implementations. In this way, the simulator becomes a helpful 
tool also for the software design of the MPI library for the target 
system. 

2.4 Routing Function 
For routing, our network simulator framework supports either 
hop-by-hop or source routing. In the case of hop-by-hop routing, 
the route determination is performed step-by-step in the switches, 
i.e., each switch determines through which port it has to route a 
given packet. In the case of source routing, the route deter-
mination is performed in the network adapter once for the entire 
route from source to destination. The sequence of route hops, also 
referred to as source route, is then carried in the header of the 
network packets so that each switch can seize its route decision 
from the packet header and act accordingly.  

In both cases, the actual route decision can be based on algo-
rithms or on routing tables. For the network topologies of interest, 
we have written specific linear routing algorithms that can be 
plugged into the switch module when a particular topology is 
being studied. The advantage of such algorithms is that they can 
be made to reflect exactly the specifics of the routing in the real 
system. The drawback is that they have to be written for every 
new topology or class of topologies. Alternatively, or generally, 
routing tables as are applied in many real systems can be used. 
For this case, we use a central control module that can read a 
routing table file and forward the corresponding table portions to 
all switch modules (for hop-by-hop routing) or to all adapter 
modules (for source routing) in the network. 

If neither routing algorithms nor routing tables are available or 
before they become available, the central module of our simulator 
can also generate a routing table file itself for any arbitrary 
network topology by using the OMNEST topology exploration 
concepts. From each switch (for hop-by-hop routing) or each 
adapter (for source routing) to each destination, the unweighted 
single shortest-path function is applied to the topology object that 
incorporates all switches and network adapters. This function is 
based on the known shortest-path algorithm by Dijkstra. For lack 
of a weighted shortest-path function in OMNEST, we optionally 
place one or multiple dummy modules onto network links and 
incorporate these in the topology object. These dummy nodes 
have no function other than counting as a node in the OMNEST 
topology object. In this way we can model a limited weighed 
shortest-path algorithm by using the existing Dijkstra algorithm. 
Furthermore, as there might exist multiple shortest paths, we need 
to find all of them. For lack of a multiple shortest-path function in 
OMNEST, we do the following. We determine the length of the 
single shortest path from a specific source switch. Then we apply 
the single path algorithm iteratively, starting from all neighbor 
switches the ports of that specific switch lead to. Then, all shortest 
paths found that have a length that is shorter by one than the 
initially determined length are alternative shortest paths.  
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Figure 2.  Task module architecture 



In addition to having our simulator generate routing tables, we 
can use tables generated externally by other means or tables 
modified manually. 

If multiple paths exist, independently of whether they are 
determined by a table or by a specific algorithm, we have to apply 
another step that selects one of the many possible paths. For this 
we have numerous predetermined options, ranging from static via 
random or round-robin path selection to state-dependent adaptive 
schemes based on shortest queues or highest number of available 
flow-control credits. Note that adaptive routing makes most sense 
with hop-by-hop routing, which was our motivation to provide 
hop-by-hop routing. Otherwise, source routing might be desirable 
because many actual systems apply source routing. However, in 
many cases, hop-by-hop and source routing are logically identical. 

If virtual channels are used, routing may also include a final step 
of selecting the right virtual channel for the next hop. Specific 
algorithms for this are needed in certain topologies (although not 
in fat-tree networks) to prevent cyclic dependency deadlocks.  

2.5 Task Placement 
The task-to-node placement is provided by assigning the number 
identifying the task to a taskRank parameter of a particular node 
in the OMNEST configuration file. This can be done explicitly 
task-by-task such as  
**.node[0].taskRank = 0 
**.node[4].taskRank = 1 
**.node[8].taskRank = 2 

While this allows a truly arbitrary assignment of tasks, it might 
become tedious for a regular assignment of a large number of 
tasks. To simplify this, we alternatively use a function 
assignTask() (defined in the OMNEST distributions file) that 
automatically assigns all tasks of an application to nodes in a 
predetermined way depending on the parameter of this function. 
In this way, only one configuration line is necessary, such as 
**.node[*].taskRank = assignTask(<parameter>) 

where <parameter> is a number identifying one of various 
predetermined schemes, such as sequential assignment (task i to 
node i) or randomly shuffled assignment. With the help of one 
additional parameter we can control the assignment of multiple 
tasks to one node. 

2.6 Application Traces 
From various laboratories and supercomputer centers, we have 
obtained a number of popular HPC application traces of different 
sizes (number of tasks) from various application fields, such as 
ocean modeling (HYCOM, POP), weather research and forecast 
(WRF), shock-wave physics (CTH), and molecular dynamics, 
fusion and transport physics (AMBER, CPMD, LAMMPS, 
GYRO, SPPM, SWEEP3D, UMT2K). Because of their different 
origins, these traces have more or less comprehensive formats 
from different tracing tools. An example for such a tracing tool is 
the Sequoia tool kit [5]. 

For the purpose of our simulator, we decided to use a simple trace 
format derived from one of the formats we obtained. Our trace 
reader can read this format directly. For other trace formats, we 
decided to write separate programs (Perl scripts) for translating 
the relevant subset of trace information from the original trace 
into the format our trace reader understands. 

In some cases, traces are very long and unwieldy although the 
really interesting phase of the trace is relatively short. Then it is 
necessary to negotiate with the trace provider for some way to 
identify the interesting phase in the program and only trace this 
phase. However, it is not trivial to start a trace in the middle of an 
application. Because of the causal relationship among different 
tasks, this must happen in a controlled way so that no task waits 
for messages that have not been traced before.  

For another set of applications in the field of weather forecast 
(DWD, ECMWF T639, ECMWF 4DVar), we use synthesized 
artificial traces that were generated by application experts with 
separate programs (Python scripts). 

Common to all application traces we have considered so far are 
very wide message size distributions and similar characteristics in 
the communication patterns. Message sizes may vary between one 
Byte and many Megabytes. Figure 3 shows an exemplary 
message-size histogram measured for the LAMMPS molecular 
dynamics application. Because of the wide span, the message size 
range is divided into logarithmically spaced cells in this diagram. 

 
Traffic patterns typically exhibit much more near-neighborhood 
than far-distance traffic and, when represented in a matrix, 
generally diagonal patterns. The left diagram in Figure 4 shows a 
typical example of such a traffic matrix for the LAMMPS appli-
cation. The high diagonal patterns essentially are made by long 
messages, whereas the ground floor in this matrix is mainly 
formed by the short messages. From this characteristic it becomes 
clear that interconnection network topologies that favor near-
neighbor communication are preferable, which leads to the 
topologies we are considering. However, this only makes sense if 
the tasks are placed onto the system in sequential order as it is 
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Figure 3.  Message size histogram for LAMMPS application 
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Figure 4.  Traffic matrix example for LAMMPS application 



done in the left diagram in Figure 4. In contrast, the right diagram 
shows how the traffic matrix would look if the tasks were placed 
in a random way onto the system. In this case, the network 
topology ideally would have to be equally fair to close and far-
distance communication patterns.  As sequential task placement is 
not always possible in a real system, we need to be able to study 
the impact of different task placements. 

2.7 Parallel Simulation Aspects 
OMNEST supports parallel distributed simulation [6] provided 
that some constraints are obeyed, as outlined in the OMNEST 
manual or in [7]. The network must be partitioned into segments 
that can be physically distributed. For this it is useful to define the 
OMNEST network description as a structure of submodules rather 
than as one flat network of basic modules. Our basic modules are 
designed in such a way that they can be arbitrarily nested. For 
example, relative references such as to the parent module are 
avoided. The network submodules or sets thereof can then serve 
as the parallel partitions. In some architectures, the partitioning is 
naturally given by the physical packaging of the system. An 
example of this is the hierarchical direct interconnect system 
shown in Figure 6. In this model, the connectivity in hierarchy 
level 1 is essentially on-board connectivity, in hierarchy level 2 
board-to-board connectivity, and in hierarchy level 3 rack-to-rack 
connectivity. In parallel simulations of this model, we used 
parallel partitions of small sets of racks.  

The requirement for a look-ahead time by the OMNEST parallel 
simulation feature is sufficiently fulfilled by the fact that the only 
connections between physical partitions are network links, which 
are modeled realistically with a finite delay in any case.  

In the process of preparing the simulator for parallel simulation, 
some caution was required where module or gate objects nested in 
other sub-modules are accessed. Some OMNEST APIs return the 
intended object in a sequential simulation, but will return 
placeholder modules or proxy gates if the target object is in 
another partition of a parallel simulation. Similarly, when working 
with OMNEST topology objects, a topology object of switch 
modules, for example, contains all switch modules of the entire 
system in a sequential simulation. In a parallel simulation, it 
contains only the switch modules that are inside the current 
partition. Understanding and circumventing these facts were 
essential for successfully simulating in parallel. 

2.8 Simulation Data Collection 
While flits traverse the network, we record in each traversed 
module various information such as queuing times, time stamps or 
hop counts inside the OMNEST messages that represent the flits. 
Once the flits reach the egress side of the network adapter, all 
kinds of statistical results can be collected from the information 
carried in the flits. Overall system-wide statistics are collected by 
default. Point-to-point statistics (i.e., per source/destination pair) 
can be collected on demand for measures of interest. The statistics 
collection is performed in a separate statistical measurement 
module. In case of a sequential simulation there is only one such 
statistical measurement module, whereas in a parallel simulation 
we apply decentralized statistics collection by placing one 
statistical module in each partition. The results collected in this 
way in a decentralized manner are then sent periodically to the 
single central control module, where they are consolidated and 
printed as optionally periodic and eventually as final results. 

Periodic results allow the observation of changes of certain 
measures during the run time of an application (see Section 2.9). 
The granularity of measurement periods is a parameter. In large 
systems, some caution is necessary in determining the period and 
the measures of interest to prevent the generation of impracticably 
large amounts of data. 

2.9 Simulation Data Visualization 
Simulation data visualization helps understand the communication 
patterns of MPI applications at run time. Our simulator enables 
trace collection of point-to-point (P2P) and collective operations 
among the nodes.  For each simulation step of the application, we 
collect internode I/O operations (the number of send/receive 
operations), mean message size, standard deviation and total bytes 
transferred. We also collect this information for collective opera-
tions and for a combination of P2P and collective. Furthermore, 
we track when load balancing is initiated. We also collect data for 
the case when multiple tasks are on a node. The amount of I/O 
versus data that leaves the node is a useful indication of how the 
network load changes when SMP nodes are used.  

Such data can then be plotted into frames of pictures, which can 
be sequenced to animate the run-time communication operations 
in a movie-like manner. Figure 5 shows a sample frame of the 
animation of I/O operation distribution in the CTH application, a 
popular shock-wave physics program developed by Sandia Natio-
nal Laboratories, USA. With data visualization, one can easily 
spot where the network hotspots are. Then optimal task placement 
and adaptive routing can be used to fine-tune the system. 
 

 

2.10 Simulator Portability 
The parallel version of our simulator runs on a cluster of SMP 
machines with the Parallel Operating Environment (POE) of the 
AIX® 3 operating system. The simulator also runs on x86 
machines with either Linux®4  or Windows®5 operating systems. 
It is even possible to run up to about 1000 nodes on a simple 
                                                                 
3 AIX is a registered trademark of International Business Machines 

Corporation in the United States, other countries, or both. 
4  Linux is a registered trademark of Linus Torvalds in the United States, 

other countries, or both. 
5 Windows is a registered trademark of Microsoft Corporation in the 

United States, other countries, or both. 

Figure 5.  Point-to-point I/O operations of CTH application 
with 176 tasks 



notebook computer. The sequential version of our simulator also 
works on those platforms. We believe the simulator can also be 
ported to other hardware and operating systems. 

3. CASE STUDIES 
3.1 Interconnect Design 
One of the main goals of our simulation environment is to support 
the design of the interconnection network for an HPC system 
under development. Simulations of all the options under 
discussion help decide on the appropriate network topology, 
switch architecture, routing protocol, and so on. In this context, 
we applied our tool to study HPC systems with fat-tree inter-
connection networks, as shown in Figure 1, and variants of this 
architecture. Examples of questions in this context are: 

• What is the optimum size of switch modules and number of fat-
tree levels? 

• What is the required link bandwidth? 
• How should the switch buffers be dimensioned? 
• How should the multi-path property of the fat tree be utilized in 

the routing protocol? 
• Can the number of switch modules in higher fat-tree levels be 

reduced?  

A case study related to the last question is exemplarily addressed 
in Section 3.2 below. 

An alternative interconnect architecture we studied is the 
hierarchical direct interconnect architecture as illustrated in 
Figure 6. In this architecture, each computing node is assumed to 
be a multi-core chip, i.e., chip multiprocessors (CMPs). A switch 
module is associated with one or a few computing nodes. A small 
set of switch modules are directly and fully interconnected via a 
first hierarchy level of interconnection links (level-1 links) 

forming first-level groups, e.g., boards. Multiple boards are 
directly and fully interconnected via a second hierarchy level of 
interconnection links (level-2 links) forming second-level groups, 
e.g., racks. Finally, multiple racks are directly and fully intercon-
nected via a third hierarchy level of interconnection links (level-3 
links) forming the third-level group, which is the full system. A 
property of this architecture is that routing between arbitrary 
nodes may involve multiple intermediate hops via links of the 
different hierarchy levels. For example, to reach a destination in 
another rack, a level-1 link hop may be required to reach the 
appropriate switch module that has a level-2 link to the right first-
level group (board) that has a level-3 link to the right second-level 
group (destination rack) and vice versa on the destination rack. 
Nonetheless, such a hierarchical complete-graph topology tries to 
balance the number of hops to reach any other node and the total 
number of links required to build the network. Examples for 
questions regarding this architecture are: 

• What is the required link bandwidth for each hierarchy level? 
• How should the switch buffers be dimensioned per link type? 
• How can cyclic dependency deadlocks be prevented? 
• What is the routing protocol? Should only direct/shortest routes 

be used or can indirect/longer routes improve performance? 

A case study related to the last question is exemplarily described 
in Section 3.3 below.  

3.2 Fat Tree Case Study 
An ideal full fat-tree network (Figure 1) provides the full 
bisectional bandwidth in all fat-tree levels. In other words, the 
number of links and the aggregate link bandwidth between levels 
are constant, and the number of switch modules is the same in all 
levels except that in the highest level only half as many are 
needed (here all switch ports are used as downward ports). As the 
number of levels that must be traversed is a function of the 
source/destination distance, and HPC applications typically have 
more near-neighbor than far-distance communication, bandwidth 
and cost could eventually be saved by reducing the bandwidth or 
the number of switch modules in the higher levels. The question is 
how far can this reduction go without significantly impacting per-
formance?  

To study this, we performed a series of end-to-end simulations of 
a fat-tree-based HPC system using some real HPC application 
traces. Gradually we reduced the bandwidth of each fat-tree level 
by 25%, 50% and 75% relative to the preceding level. In addition, 
we studied the impact of different switch module sizes and task-
to-node placements.  

Figure 7 shows some exemplary results obtained from simulations 
with one particular HPC application (LAMMPS, a molecular 
dynamics simulator). The results for other applications are 
conceptually very similar. 

The diagrams show the measured mean system delay of flits as a 
function of the bandwidth reduction relative to the preceding fat-
tree level. The upper diagram is for sequential task-to-node 
placement (task i to node i), the lower diagram for randomly 
shuffled task placement. Three different switch system sizes are 
considered. The tables inserted list the percentages of traffic 
(number of flits) that traverse up to each of the fat-tree levels. 

As we can see, a bandwidth reduction of up to 50% appears 
feasible if the switch modules are larger than 8×8. The larger the 
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Figure 6.  HPC system model example with hierarchical direct 
interconnection network 



switches, the more bandwidth reduction is tolerable. This relative 
behavior appears to be independent of the task placement, 
although the absolute system delay is significantly worse for 
random task placement. The tables show that a large portion of the 
traffic travels up all the levels for random task placement, whereas 
for sequential placement it is the opposite. In fact, sequential task 
placement has turned out to be the optimum on fat trees for about 
a dozen of scientific HPC applications we have simulated so far. 

3.3 Indirect Routing Study 
In the hierarchical direct interconnection model (Figure 6), there 
is only one shortest path between any pair of nodes on different 
racks. The single highest-hierarchy link (rack-to-rack link or 
level-3 link) on this direct route could become a bandwidth 
bottleneck. More bandwidth could be made available by using 
additional alternative routes that indirectly lead via third racks. 
However, these indirect routes have a longer delay because they 
include more hops, particularly two rack-to-rack hops. Further-
more, alternative indirect routing involves a complexity and cost 
issue. The question is whether this is worth the effort and under 
which circumstances. 

To study this, we performed a set of simulations based on the 
hierarchical direct interconnection model. We configured a system 
of five racks and placed an HPC application across the nodes of 
two of the racks: Half of the application tasks were placed on the 
nodes of one rack, and the other half on the nodes of the other 
rack. Hence, when using only direct routes in a first simulation, 
half of the tasks have to talk to the other half of the tasks via a 
single rack-to-rack link. In three more simulation runs, we then 
allowed additional indirect routes via one, two or three other 
racks. To have background traffic on these “detour” racks, we 
placed additional application partitions on each of them. 

Another consideration is that if unbalanced direct and indirect 
routes are used simultaneously, routing with static route selection 
would distribute the traffic equally among the different paths that 
might not be the optimum paths. Hence, we also considered the 
option of adaptive routing that selects the various possible paths 
based on switch-queue occupancies. 

Figure 8 shows application run-time results obtained from 
simulations with the LAMMPS application, which are again 
conceptually similar to results for some other applications we 
tested. The diagram shows the application run time normalized to 
the run time of the case when only direct routes are used. Further-
more, we applied here the feature of setting the processor speed to 
infinite to see the pure impact of the network. Hence the 
application run time is exclusively the time spent for I/O and in 
the network. We can see that allowing one additional indirect 
route to the direct route does not yet provide an improvement. On 
the contrary, for static routing, half of the traffic through the long 
indirect route is too much and causes a deterioration that can 
hardly be compensated if adaptive routing were applied. However, 
for more than one additional indirect route, significant improve-
ments can be achieved in any case, in particular when combined 
with adaptive routing.  

For comparison, we made another simulation in which we 
artificially increased the bandwidth of the rack-to-rack links by 
using many of them in parallel so that the system bottleneck is 
shifted to parts of the system inside the racks. The result of this 
case yields a kind of ideal bound, indicated by a dashed blue line 
at the lower portion in the diagram. From this, we can expect that 
providing the capability for many additional indirect routes will 
probably not be worth the effort.  

Certainly, for a definitive answer on the value of indirect routing, 
more studies are necessary. Indirect routing may hurt the 
performance of some other applications, as it uses more links than 
direct routing for each route, and hence may reduce the effective 
interconnect bandwidth and increase latency for other applica-
tions. 

3.4 GUPS Benchmark Study 
The random access GUPS (Giga updates per second) benchmark 
from the HPC Challenge suite [4] is a very important performance 
measure for HPC systems. Although it does not really require 
trace-driven simulation and the GUPS performance can eventually 
be obtained analytically, GUPS simulations turn out to be very 
useful for several reasons. For lack of large enough application 
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Figure 8.  Indirect routing results for LAMMPS application 
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Figure 7.  Fat-tree results for LAMMPS application 



traces, a GUPS simulation with synthetically generated traffic 
allows the simulation of the full-scale system. Thereby the parallel 
simulation scalability can be tested without a need for application 
traces. Furthermore, effects can be studied and validated that only 
occur at very large system sizes. Finally, GUPS simulation results 
can validate the correctness of analytical predictions as well as the 
correctness of large parts of the simulator. 

We have performed parallel GUPS simulations of the hierarchical 
direct interconnection model (Figure 6). Thereby we were able to 
validate predicted analytical results up to a system scale of 65,536 
nodes. This included the validation of a predicted discontinuity 
effect at a very large system size above which the second-level 
connectivity becomes the system bottleneck, whereas below that 
size the third-level connectivity was the system bottleneck. 
Furthermore, we observed that the overall GUPS throughput tends 
to stabilize sooner than individual port buffer and link utilizations 
across the interconnection network for the uniform GUPS traffic 
patterns in a large-scale system.  

On the one hand, we observed a surprisingly good speedup by 
parallel simulation. We distributed a small system that originally 
ran on a single processor onto a 16-node cluster of the same 
processors. Thereby we observed a superlinear speedup on the 
order of 17 thanks to the 16-fold aggregate cache capacity and 
efficient model partitioning. On the other hand, GUPS simulation 
of a large-scale system of 65,536 nodes certainly requires 
considerably more computing resources. For example, we used a 
32-node cluster with 512 GByte aggregate memory for the full-
system simulation. It takes about one hour wall-clock time to 

simulate ten microseconds at high GUPS injection rate (i.e., in 
system saturation). Low injection rate or large packet size 
simulations run faster. 

3.5 MPI Application Performance Projection 
We have used our simulator to project the performance of some 
mission-partner MPI applications running on a projected future 
supercomputer system. One of the applications is ECMWF 
(European Centre for Medium-range Weather Forecasts). 
ECMWF is a complicated application with various MPI commu-
nication patterns. It has proved to be network-intensive on some 
existing systems. 

We break down ECMWF into its representative MPI communi-
cation patterns and simulate them on the three-level hierarchically 
fully connected interconnect (Figure 6). We compare the execu-
tion time and throughput of these MPI patterns of configurations 
with 1, 4 and 16 level-3 links per pair of level-3 groups (racks).  
Figure 9 shows the results.  

We observe a significant improvement in execution time and 
throughput when we increase from one to four level-3 links per 
pair of level-2 groups.  However, we see only negligible improve-
ment when we further increase to 16 level-3 links per pair of 
level-2 groups.  The experiment shows that a configuration of four 
level-3 links per pair of level-2 groups is sufficient to meet 
ECMWF’s network requirement.  Hence, we can downsize the 
network cost of this application without performance loss. 
Alternatively, the extra level-3 links can be shut down to reduce 
power consumption. 

4. RELATED WORK 
Because of space limitations, we only discuss related work that 
most closely resembles our research. 

IBM’s Blue Gene®/L6 team used an interconnection simulator [8] 
to model Blue Gene/L’s three-dimensional torus interconnection 
network during the design phase of the project.  They selected a 
shared-memory parallel simulation approach to interconnect 
modeling.  Message-passing calls of applications are passed to the 
simulator via traces, which are collected using an IBM unified 
trace environment trace-capture utility that runs on IBM 
supercomputer machines. Traces of up to several hundreds of 
nodes were collected. They used time-driven parallel simulation. 
In our work, we use the MPI interface to parallelize our discrete-
event interconnect simulator. We expect the availability of 
commodity clusters and the scalability of MPI libraries to make 
our approach more cost-effective. Our trace synthesizer is able to 
generate traces for virtually any number of MPI threads. In addi-
tion, our simulator features the capability of placing MPI tasks 
arbitrarily, which can be very useful to tune MPI application on 
future systems. 

BigSim [9] is an interconnect simulator to help optimize 
applications for larger-scale HPC systems. It uses optimistic 
synchronization to parallelize the simulation. In our work, we use 
detailed interconnect models to help also the interconnection 
network design. We use conservative synchronization to improve 
development productivity.  Furthermore, as conservative synchro-
nization minimizes load imbalance in the simulation, our 
                                                                 
6  IBM and Blue Gene are registered trademarks of International Business 

Machines Corporation in the United States, other countries, or both. 
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Figure 9.  Run time and throughput of MPI communication 
patterns in ECMWF in the three-level hierarchically fully 

connected interconnect (Figure 6).  
#L3 means the number of level-3 links. 



approach can simulate very large-scale systems.  In our work, we 
also collect MPI traces from real machines or synthesize them 
based on detailed application knowledge. 

Dimemas from UPC [10] is an MPI-trace-driven simulator 
primarily intended to help users develop and tune parallel MPI 
applications. For that purpose it models the nodes of a parallel 
machine and the applications running on them at a similar 
abstraction level as we do. However the network is modeled at a 
much higher abstraction level in the form of a set of buses. Hence 
Dimemas is not suited for studying the impact of different net-
work topologies, switch architectures or network protocols, nor 
would it be useful to help the design and optimization of the 
interconnection network, the switches and network protocols. A 
Dimemas simulation produces results in the form of another trace 
file that serves as input for separate performance analysis tools 
such as their powerful visualizing tool Paraver. 

Sharapov et al. [11] presented a performance estimation methodo-
logy for an HPC application running on a future HPC hardware 
architecture. It applies a hierarchical modeling method by 
combining queuing theory, such as the mean-value analysis 
model, with cycle-accurate simulation. Their interconnect model 
is an analytical model, whereas the processor micro-architecture 
model is cycle-accurate. They analyzed the application behavior 
with another workload characterization process. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we have demonstrated using our MARS tool that 
end-to-end simulation is feasible for HPC systems with hundreds 
of thousands of processors.  The tool maintains reasonable trace-
driven simulation details of both the processors and the inter-
connection network.  It features several network topologies, 
flexible routing schemes, arbitrary application task placement, 
point-to-point statistics collection, and data visualization. With a 
few case studies, we showed that this tool is very useful for high-
level system design, performance projection, and application 
tuning of future HPC systems. 

Currently our models incorporate feedback between the network 
and the MPI-trace execution by flow control. Saturation trees 
resulting from heavy congestion would require congestion 
management that throttles the injection rate. We plan to imple-
ment and study congestion control with our tool to help under-
stand this difficult control problem under discussion in the HPC 
community. 

To expand the capabilities for analyzing the large amount of 
possible simulation results of HPC simulations, we also plan to 
add a feature to generate result traces in a format that can directly 
be used by already existing performance analysis and visualization 
tools, such as the UPC Paraver tool. 

Leveraging modeling details and simulation speed of MARS is 
challenging. Also, minimizing the limitation on interactions 
between MPI tasks in trace-driven simulation remains a challenge. 
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